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INTRODUCTION

The development of industrial areas will have 
a positive impact on development and economic 
growth, but on the other hand, it can also lead to a 
decline in environmental quality (Haryanto et al., 

2021) (Jie et al., 2023). In Indonesia, the industrial 
sector is one of the main pillars supporting nation-
al economic development, backed by abundant 
natural resources such as oil, natural gas, miner-
als, and rubber. Based on data from the Ministry 
of Industry, as of 2023 there are more than 140 
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ABSTRACT
Based on the Master Plan for the Acceleration and Expansion of Indonesia’s Economic Development Kendal Re-
gency is positioned as the industrial gateway to the Semarang Metropolitan Region. through the development of the 
Kendal Industrial Park. The development of the area was carried out by removing approximately 42–210 hectares 
of mangrove (2015–2024), so that one of its functions as a carbon absorber and storage medium is reduced. Cal-
culations of the potential carbon stock of existing mangroves are needed as a baseline for identifying the impact 
of industrial area expansion. The objective of this study is to produce a baseline of carbon sequestration potential 
from mangrove. Research data using Sentinel-2 MSI Level-2A and field survey data measuring AGC parameters. 
The research method utilized multispectral random forest classification, spectral transformation, and AGC carbon 
stock calculations. The results showed that the mangrove at the study site covered an area of 492.37 hectares, of 
which approximately 393.75 hectares were in an industrial zone with a very high mapping accuracy of 0.91. The 
AGC measurement results in the field had an average of 31.83 tons/hectare for the predictor group and 31.83 tons/
hectare for the validator group. The correlation results of 11 vegetation indices with AGC show that the GNDVI 
(r=0.543), SAVI (r=0.512) and EVI (r=0.504) indices have a very high to high correlation, while the MDI (r=0.143) 
and WFI (r=0.222) indices had the lowest correlations. The results of carbon stock calculations based on vegetation 
indices show an average value of 688,990.21 tons, with the highest calculation results produced by the MDI index 
with a value of 1,234,201.39 tons and the GNDVI index producing the lowest estimated value of approximately 
434,494.73 tons. The AGC potential mapping model results with the highest accuracy were obtained from the SAVI 
(r=0.76), EVI (r=0.75), and ARVI (r=0.75). Conclusion: The use of appropriate vegetation indices, such as GNDVI, 
SAVI, EVI, and ARVI, can provide accurate information regarding the potential carbon stock in mangrove. Recom-
mendation: future studies should involve all minor species compositions at the study site. The results of this study 
support the achievement of SDGs Point 11 (Sustainable cities and communities) and Point 13 (Climate action).
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industrial estates developing across the archipela-
go, contributing around 20% to the national gross 
domestic product (Sultan, 2024). Industrial estates 
in Indonesia are distributed across 24 provinces 
with a total area of approximately 70,000 hectares, 
of which around 61.76% are located on the island 
of Java. Investment in Java’s industrial estates has 
increased significantly since 2010, driven by in-
tegration into the global supply chain through the 
ASEAN Economic Community (AEC) in 2015. 
The development of industrial areas has driven the 
growth of Java’s gross domestic product per capita 
to 1.5 times the national average (Nugraheni and 
Lestari, 2006). Approximately 60% of the indus-
trial areas developed on Java Island were built on 
agricultural land, forests, and wetlands that pre-
viously served as ecosystem buffers (Supriatna 
and Lenz, 2025). Spatial planning policies that 
prioritize industrial investment are a major factor 
in accelerating land conversion without adequate 
environmental impact assessments. Based on data 
from the Ministry of Environment and Forestry, 
there has been a significant decline in the environ-
mental quality index from 68.2 in 2019 to 65.4 in 
2022, which was caused by a 40% weighting of air 
and water degradation due to industry (Sidiq et al., 
2024; Pujiati et al., 2025).

Approximately 70–75% of industrial es-
tate development on Java Island is concentrated 
in coastal areas, particularly on the north coast 
(Rizal and Apriliani, 2020). This phenomenon is 
caused by various factors, such as flat topography 
dominated by alluvial plains, which facilitates in-
frastructure development, and the availability of 
vast land areas, which facilitates the development 
of area-based industries. In addition, the coastal 
region of Java has direct connectivity to interna-
tional seaports, which are essential for export-ori-
ented industries, thereby reducing logistics costs 
by 30–40%. The region is also accessible by the 
North Coast Highway, which is Indonesia’s main 
land transportation artery stretching 1.000 km and 
serving as the backbone of industrial logistics via 
land routes. One of the new areas on Java Island 
undergoing regional-based industrial develop-
ment is the Kendal Regency coastline. Based on 
the 2011–2025 Master Plan for the Acceleration 
and Expansion of Indonesian Economic Develop-
ment, Kendal Regency is positioned as an indus-
trial gateway in the Semarang Metropolitan Re-
gion (SMR) with the development of the Kendal 
Industrial Park (KIP), which began operations in 
2013. The establishment of KIP is in accordance 

with the 2011-2031 spatial planning of Kendal 
Regency, which designates the eastern coastal 
area as the center for KIP development. KIP was 
developed in Brangong District and Kaliwungu 
District in 2016 in an area of 2.200 hectares (Cho-
lis et al., 2023;  Baihaqi et al, 2019). 

The development of KIP resulted in changes 
in land use, where during 2005–2017 there was an 
increase in built-up land of 289.52 hectares by con-
verting 65.92 hectares of vegetation area (Sadewo 
and Buchori, 2018), one of them is the mangrove 
ecosystem (Sidiq et al., 2024). The expansion of 
KIP into the coastal areas of Brangsong and Ka-
liwungu has resulted in a reduction in mangrove 
area of approximately 42–210 hectares (2015–
2024). The 2023 mangrove ecosystem identifica-
tion results show an area of approximately 120.99 
hectares, of which only about 20.40 hectares are in 
good condition. Mangroves are endemic ecosys-
tems in coastal areas that play an important role 
in absorbing and storing carbon from the atmo-
sphere, where mangrove carbon stocks are cal-
culated based on the biomass of trees growing in 
that location (Ray et al., 2011). Mangrove carbon 
stock measurements are obtained from several 
parameters, including: stem diameter, tree height, 
and mangrove species. The measurement results 
are then used to calculate carbon sequestration us-
ing a standard conversion factor of approximately 
47% of the dry biomass of mangroves. The carbon 
stock in mangrove biomass can reach hundreds of 
tons per hectare, with one hectare of mangroves 
capable of sequestering and storing around 300–
400 tons of carbon, depending on the location, age, 
and condition of the ecosystem (Harishma et al., 
2020). Based on this description, there is an urgent 
need for research on the importance of calculating 
the potential carbon stock of existing mangroves 
as basic data for identifying the impact of indus-
trial area expansion. In addition, the data obtained 
can be used as a baseline for projecting the decline 
in carbon stock due to land conversion and design-
ing mangrove conservation strategies. This study 
aims to compile a baseline of carbon sequestration 
potential from mangrove ecosystems and identify 
the accuracy levels of various types of vegetation 
indices in calculating above ground carbon (AGC) 
on the coast of Kendal Regency.

The calculation of mangrove carbon stock po-
tential can use the spectral transformation method 
of remote sensing imagery through canopy den-
sity-based vegetation indices. This method has 
several advantages that make it very effective and 
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efficient, namely fast calculation estimates cover-
ing a very large area, utilizing imagery data with 
various temporal resolutions and levels of detail 
(Huang et al., 2021). This enables dynamic, real-
time monitoring of carbon stocks, which is cru-
cial for detecting changes in land use in coastal 
areas. The calculation of potential carbon stocks 
in this study uses 11 vegetation indices, each of 
which has varying sensitivity in recording spec-
tral responses. Therefore, the use of 11 indices is 
expected to provide more comprehensive informa-
tion on variations in biomass and carbon stocks in 
the field. This approach is a novelty in research, 
where previous studies only used 2–3 vegetation 
indices, whereas this study uses 11 vegetation in-
dices that can make an important contribution with 
variations in methods for calculating carbon stocks 
with varying degrees of accuracy. This study uses 
primary data from Sentinel-2 MSI Level-2A imag-
ery obtained from the Google Earth Engine (GEE) 
platform, Sentinel 2A provides 10–20 meter multi-
spectral data capable of recording mangrove veg-
etation structures with good accuracy. In addition, 
these images have high temporal resolution (5 
days), enabling dynamic and periodic monitoring 
of carbon stock changes. Next, for data processing, 
we utilized a classification model using the random 
forest (RF) algorithm on the GEE platform, which 
was chosen for its high accuracy and robustness 
against noise, with a configuration of 100 decision 
trees and five variables per split (Fariz and Faniza, 
2023;Amalia et al., 2024).

METHODOLOGY

Research sites

The mangrove ecosystem on the coast of 
Kendal Regency is geographically located on the 

north coast of Central Java, covering four subdis-
tricts, namely Patebon, Kendal City, Brangsong, 
and Kaliwungu. Based on Kendal Regency’s 
Spatial Planning, the area has been designated 
as a developing industrial area. The spatial dis-
tribution of mangroves is found in pond embank-
ments and tidal areas of varying widths. This area 
is strategic because it is located between indus-
trial development and natural coastal ecosystems, 
making it an important area to study in the con-
text of blue carbon conservation amid industrial 
development pressures. The following image 
shows the location of coastal research in Kendal 
Regency (Figure 1).

Satellite image data collection

The data used in this study are Sentinel-2 MSI 
Level-2A images from the GEE platform. These 
images are surface reflectance products that have 
been atmospherically corrected and orthorectified 
using the UTM/WGS84 projection system. Level-
2A products were chosen because they have been 
processed using a digital elevation model (DEM) 
to project the images into accurate cartographic 
coordinates. The specifications of the Sentinel-2A 
images used include:
	• Spatial resolution 10 meter – Band Blue 

(~490 nm), Green (~560 nm), Red (~665 nm), 
NIR (~842 nm).

	• Spatial resolution 20 meter – Band Vegeta-
tion Red Edge (~705 nm, ~740 nm, ~783nm, 
~865 nm), dan SWIR (~1610 nm dan 
~2190 nm).

	• Spatial resolution 60 meter – Band Coastal 
Aerosol (~443 nm), Water Vapour (~940 nm), 
dan Cirrus (~1375 nm).

The image acquisition period was selected 
between April and May 2025, considering that 

Figure 1. Research sites
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this period marks the beginning of the dry season, 
thereby minimizing cloud cover. This timing also 
takes into account tidal conditions and optimal 
mangrove vegetation activity for spectral analy-
sis. The images used are limited by a cloud cover 
criterion of less than 20% to ensure good data 
quality. Cloud masking is performed using the 
quality assessment (QA60) band and the median 
reducer function available on the GEE platform.

Field data collection

Data collection was adjusted to the satellite 
image acquisition period to ensure temporal con-
sistency between field data and remote sensing 
data. A total of 80 sample points were taken using 
stratified random sampling adjusted for accessi-
bility at each location. The sampling points were 
divided proportionally based on the spatial char-
acteristics of mangroves in each region. Further-
more, sample point measurements were carried 
out with the following conditions:

Each sampling location uses a square plot 
measuring 10 × 10 meters in accordance with the 
spatial resolution of Sentinel-2A imagery. Tran-
sect lines are drawn perpendicular to the coast-
line or river towards the mainland, adjusted to the 
shape of pixels in remote sensing imagery. 

Mangrove species identification was carried 
out using an ecological approach, taking into 
account mangrove characteristics and growth 
zones. Breast height diameter was measured on 
each plot for trees with a diameter ≥10 cm be-
cause this size contributes significantly to the 
estimation of above-ground biomass. Stem di-
ameter was measured at adult breast height or 
approximately 1.3 meters above ground level, 
with measurement rules adjusted for the irregular 
conditions of mangrove stems. 

A total of 80 samples were collected in the 
field. These were then divided into 60 samples 
as predictors and 20 samples as validators. This 
was based on the study (Sugara et al., 2022) and 
(Hidayah et al., 2022) which used 60 samples, 
which is more than other studies (Suardana and 
Nandika, 2023).

Sentinel-2 image processing

The classification of mangrove and non-man-
grove cover was carried out on the GEE platform 
using Sentinel-2 MSI Level-2A composite im-
ages with cloud cover ≤ 20%. The cloud masking 

process utilized the QA60 band and median re-
ducer function to produce cloud-free annual com-
posites in Kendal Regency and its surroundings. 
The classification model uses the RF algorithm, 
which was chosen for its high accuracy and ro-
bustness against noise, with a configuration of 
100 decision trees and five variables per split 
(Fariz and Faniza, 2023)(Amalia et al., 2024). 
The ‘Connected Pixel Count’ spatial filter in GEE 
is applied to eliminate pixel noise, retaining only 
areas with ≥ 10 connected pixels.

In the classification, this study used 300 points 
(100 mangroves, 200 non-mangroves) as training 
samples. The training samples were collected us-
ing stratified random sampling to represent man-
grove, water/pond, built-up land, non-mangrove 
vegetation, and open land classes. Input features 
include all bands from Sentinel-2A, both 10 m 
and 20 m resolution. (Farzanmanesh et al., 2024), 
as well as vegetation indices such as NDVI, water 
indices such as NDWI, and built-up land indices 
such as NDBI. NDVI and NDWI are used to fa-
cilitate the separation of aquaculture ponds and 
mangroves (Gupta et al., 2018), while NDBI was 
involved because it is sensitive to developed land, 
including industries located in some parts of the 
study area (Fariz and Faniza, 2023). Next, a vali-
dation sample of 250 points was also taken to test 
the accuracy of the classification results, which 
were later calculated using the kappa method.

Vegetation index processing

This study compares eleven vegetation indi-
ces to develop a model for estimating mangrove 
carbon stocks above ground. The vegetation indi-
ces used are shown in the following Table 1.

A comparison of 11 Sentinel-2A image-based 
vegetation indices was conducted to identify and 
model carbon stocks in mangrove ecosystems. 
Generic indices such as NDVI and GNDVI are 
effective for mapping the extent of mangroves be-
cause they reflect general vegetation through dif-
ferences in NIR and red or green band reflectance. 
The SAVI index helps reduce bias due to back-
ground soil variation at the edges of open man-
grove forests by adjusting NDVI values using a 
soil constant (L) (Zhen et al., 2021). Meanwhile, 
the ARVI and EVI indices improve the accuracy 
of biomass estimates in coastal areas that are of-
ten foggy or smoky through blue band correction 
and additional coefficients to reduce the effects of 
aerosols (Tran et al., 2022). Specialized mangrove 
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indices such as CMRI utilize differences in green-
ness and water content in mangrove leaves to im-
prove the discrimination of mangroves from non-
mangrove vegetation (Mishra and Sethi, 2023), 
while MDI highlights the spectral characteristics 
typical of mangroves under saline water pressure 
with a combination of red edge and NIR bands 
(Vasquez et al., 2023).

Furthermore, red-edge-based indices (IRECI, 
RENDVI, NDRE) proved to be more sensitive to 
chlorophyll content and mangrove leaf structure ( 
Suardana et al., 2023; (Farzanmanesh et al., 2024; 
Munawaroh et al., 2025), thereby improving car-
bon stock estimates in the upper canopy layer. The 
WFI index is specifically designed for the identi-
fication of swamp forests, including mangroves, 
by highlighting conditions of high humidity (Jia 
et al., 2019), and EVI can overcome NDVI satu-
ration in dense canopy cover, which is common 
in mature mangroves (Tran et al., 2022). By com-
paring these various indices, the most accurate 
index for mapping mangrove carbon stocks under 
various environmental conditions can be identi-
fied (Nguyen, 2021).

Above ground carbon estimates 

Above ground carbon (AGC) estimates were 
obtained from field data that had been collected. 
Before obtaining AGC values, the biomass above 
the mangrove soil surface was calculated for each 
species found.. The mangrove species identified in 
this study were Avicennia marina and Rhizophora 

mucronata, because although there are 11 types of 
mangroves in the study area, these two species are 
very dominant throughout the area (Irsadi et al., 
2025). AGC calculations use allometric equations 
specifically designed for Asian mangroves, mak-
ing them highly relevant for use in Indonesia. The 
allometric equations used in this study (Table 2) 
are calculated from AGB based on the standard 
published in Indonesian National Standard (SNI) 
7724:2011, whereby 0.47 or 47% of biomass is 
carbon. AGC is calculated using the equation: 
	 AGC = AGB × 0.47.	 (1)

Above ground carbon model development

The development of the above-ground carbon 
estimation model in this study used 80 sample 
points from field measurements, which were di-
vided into 60 predictor data (75%) and 20 vali-
dator data (25%) following common practices 
in statistical modeling. The modeling approach 
uses simple linear regression analysis for one in-
dependent variable, with AGC as the dependent 
variable and 11 Sentinel-2A vegetation indices 
as independent variables. The model develop-
ment stages began with a correlation analysis be-
tween each vegetation index and field AGC using 
60 predictor data, followed by the construction 
of linear regression equations for each vegeta-
tion index. Once the linear regression equations 
have been constructed, the next step is to apply 
the regression equations to Sentinel-2A images to 

Table 1. Vegetation index algorithm
Vegetation index Algorithm References

NDVI (normalized difference vegetation index) (NIR – Red) / (NIR + Red) Rouse, 1973
(Fariz nad Faniza, 2023)IRECI (inverted red edge 
chlorophyll index) (NIR – Red) / (Red Edge 1 / Red Edge 2) Frampton et al, 2013

SAVI (soil-adjusted vegetation index) ((NIR – Red) / (NIR + Red + 0.5)) × (1 + 
0.5) Huete, 1988

CMRI (combined mangrove recognition index) NDVI – NDWI Gupta et al, 2018
GNDVI (green normalized difference vegetation 
index) (NIR – Green) / (NIR + Green) Gitelson and Merzlyak, 1996

RENDVI (red-edge normalized difference 
vegetation) (Red Edge 2 – Red) / (Red Edge 2 + Red) Fernández-Manso et al, 2016

NDRE (normalized difference red-edge) (NIR – Red Edge) / (NIR + Red Edge) Barnes et al, 2000)

WFI (wetland forest index) (NIR – Red) / SWIR2 Jia et al, 2019

ARVI (atmospherically resistant vegetation index) (NIR – (Red – (Red – Blue))) / (NIR + 
(Red – (Red – Blue))) Kaufman and Tanre, 1992

EVI (enhanced vegetation index) 2.5 × ((NIR – Red) / (NIR + 6 × Red – 7.5 
× Blue + 1)) Hueta, 2002

MDI (mangrove discrimination index) (NIR – SWIR2) / SWIR2 Wang et al, 2018
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produce 11 vegetation index-based AGC models. 
Finally, the models are validated using correlation 
(R) and root mean square error (RMSE).

Next, model validation was performed using 
20 validator data that had been set aside to test 
the accuracy of each AGC model prediction. The 
best model was selected based on the combina-
tion of the highest R value (≥ 0.6 as a sufficiently 
high accuracy threshold) and the lowest RMSE to 
minimize prediction errors. The formula used is 
as follows.

	 RMSE = 		
	 √(Σ(Y_predict - Y_observe) ² / n)	

(2)

	 MAE = Σ|Y_predict - Y_observe| / n	 (3)

where:	n is the number of validation samples.

The model with the highest R² and lowest 
RMSE will be selected as the best model for es-
timating mangrove carbon stocks in coastal ar-
eas in Kendal Regency. The following Figure 2 
shows the research flowchart.

RESULT AND DISCUSSION

Mangrove mapping in research study based 
multispectral classification

Mangrove mapping using multispectral clas-
sification poses its own challenges, as these 
objects are highly susceptible to mix-pixel in 
medium-to-low resolution images. The study 
site is a mangrove ecosystem associated with 
industrial areas, fish ponds, settlements, and ag-
ricultural land (Fariha et al., 2021; Sidiq et al., 
2025; Fariz et al., 2025), potential misclassifica-
tion of mapped mangroves due to mix-pixel, es-
pecially for mangrove objects around fish ponds 
(Rahmandhana and Kamal, 2022). In general, the 
difference between mangrove and non-mangrove 
objects in Sentinel-2A RGB false color composite 
images (NIR, SWIR, red) is clearly visible, with 
mangroves appearing darker due to their rela-
tively high NIR, SWIR, and red values. The NIR 

and red bands are sensitive to vegetation green-
ness, while the SWIR band is highly responsive 
to soil moisture affected by tides. Thus, with this 
approach, mangrove mapping can be carried out 
more accurately despite the challenges of land 
cover heterogeneity in industrial coastal areas.

This study used Sentinel-2A composite im-
ages to map mangroves on the coast of Kendal 
Regency, specifically in Patebon District, Kendal 
City District, Brangsong District, and Kaliwungu 
District, with the results detecting 492.37 hect-
ares of mangroves. Random Forest classification 
produced very high accuracy, with an overall 
accuracy of 0.91 and a kappa of 0.81. This high 
level of accuracy was possible due to the limited 
number of classes used, uniform sampling points, 
and consideration of tides and cloud cover. The 
classification results were highly consistent with 
field data, but the mapping results still contained 
classification errors, where wet agricultural land 
and shrubs around the ponds were still included in 
the mangrove class. This required manual inter-
vention, namely visual interpretation to separate 
the classification results (Fariz et al, 2024). The 
following image shows the spatial distribution of 
mangroves at the research site (Figure 3).

Carbon stock calculation based above ground 
carbon

Carbon stock is the amount of carbon stored 
in various types of ecosystems, such as vegeta-
tion biomass, with one calculation method using 
AGC focusing on estimating the carbon stored in 
mangrove biomass above ground, such as trunks, 
leaves, branches, and fruit. Field measurements 
of mangrove carbon stock at the research site 
showed that the range of carbon values above 
ground level varied considerably, reflecting the 
heterogeneity of mangrove vegetation in the tran-
sitional area between fishponds and industrial 
areas on the Kendal coast. In the predictor data 
group, AGC values ranged from 4.66 to 79.95 
tons/hectare, with an average of 31.83 tons/hect-
are, while in the validator data, the range of values 

Table 2. Alomertrik equation for above ground carbon estimation
Species Algorithm Wood density References

Rhizophora mucronata B = 0.128 × D^2.60 0.8483 Fromard et al., (1998)

Avicenia marina B = 0.1848 × D^2.2 0.6700 Hakim et al, 2016; Farahisah and Yulianda, 2021

Note: D is the DBH of the tree in cm; ρ is the wood density in g cm-3.
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was between 2.32 and 60.90 tons/hectare, with 
an average of 28.9 tons/hectare. This difference 
indicates structural and physiological variations 
between mangrove plots due to environmental 
factors such as salinity, water depth, and anthro-
pogenic pressure. These values were then used as 
a basis for testing the relationship between actual 
carbon stocks in the field and various vegetation 

indices resulting from the transformation of Sen-
tinel-2A images, with the aim of assessing the 
extent to which spectral parameters can represent 
variations in biomass and carbon stocks in man-
grove ecosystems spatially.

After obtaining the AGC measurement results, 
a correlation test was conducted with vegetation 
indices, where 11 vegetation indices were used in 

Figure 2. Research flowchart

Figure 3. Spatial distribution map of mangroves in research sites
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this study, each with its own characteristics, and 
tested in the field to obtain correlation values (R), 
where a stronger correlation is indicated by an R 
value closer to 1. The results of linear regression 
analysis between field AGC values and 11 vegeta-
tion indices from Sentinel-2A imagery show that 
GNDVI has the highest correlation (r = 0.543), 
followed by NDVI (r=0.534), ARVI (r=0.523), 
SAVI (r=0.512), and EVI (r=0.504). Based on 
these correlation values, these five indices pro-
vide an overview that the differences in the NIR, 
Red, and Green bands directly capture variations 
in mangrove biomass well. Based on the results 
of the linear regression analysis, GNDVI showed 
the highest correlation value with AGC (r=0.543), 
indicating that this index is more sensitive in re-
sponding to variations in mangrove biomass than 
other indices. Furthermore, there are SAVI and 
EVI indices that have relatively high correlation 
values, where both indices are sensitive to vegeta-
tion by reducing the effects of the atmosphere and 
soil. The following Table 3 presents the correla-
tion between the results of vegetation index pro-
cessing and AGC values at the research location.

Conversely, the spectral transformations MDI 
(r=0.143) and WFI (r=0.222) showed the lowest 
correlation, indicating low sensitivity to varia-
tions in mangrove carbon stocks in the Kendal 
coastal area. Based on the correlation values ob-
tained, these two vegetation indices are less effec-
tive for mapping variations in mangrove biomass, 
which are more influenced by vegetation struc-
ture and density, but are more sensitive in reflect-
ing moisture conditions or water content around 
vegetation, such as ponds and marine waters. In 
addition, mangroves with varying moisture levels 

also affect MDI and WFI values differently, mak-
ing these two indices less capable of accurately 
distinguishing variations in carbon stocks. The 
following Figure 4 shows the correlation between 
actual carbon stocks and the results of processing 
the Sentinel 2A image vegetation index.

Calculation and correlation of carbon stock 
values based on spectral transformation 	
of vegetation indices with above ground 
carbon

Carbon stock calculations were performed 
using the spectral transformation method of 11 
vegetation indices based on canopy density and 
through potential calculations using the AGC ap-
proach based on field parameter calculations. The 
results of the calculations using both methods 
were then tested for accuracy using the RMSE 
method and for precision using correlation. Based 
on the results of total carbon stock calculations 
from various vegetation indices, there appears to 
be significant variation in values. The MDI in-
dex produced the highest carbon stock estimate, 
reaching approximately 1,234,201.39 tons, which 
indicates its sensitivity to variations in mangrove 
biomass structure. Conversely, the GNDVI in-
dex provided the lowest estimate, approximately 
434,494.73 tons, a value that reflects its limita-
tions in capturing canopy dynamics in mangrove 
ecosystems. In general, the average total carbon 
stock of the eleven vegetation indices reached 
688,990.21 tons with a median value of around 
621,829.56 tons, where the variation in values 
indicates that most indices produce relatively 
consistent estimates in the middle range. Based 
on the total carbon stock table, the three vegeta-
tion indices that showed the best performance in 
the correlation and RMSE tests, namely SAVI, 
EVI, and ARVI, also showed high and consistent 
carbon stock estimation results. SAVI recorded a 
total carbon stock of approximately 621,828.62 
tons, followed by EVI with 664,222.65 tons, and 
ARVI with 448,379.04 tons. These values con-
firm that, in addition to excelling in model accu-
racy (high correlation and low RMSE), the three 
indices are also capable of representing the po-
tential carbon stock of mangroves in significant 
amounts. The differences in results between the 
indices further reinforce the reasons why SAVI, 
EVI, and ARVI are considered the optimal indi-
ces for mapping AGC potential in mangrove ar-
eas. The following Table 4 shows the results of 

Table 3. Correlation results of vegetation index 
processing with AGC values

Vegetation 
index

Linear regression 
equation

Correlation 
(R)

NDVI 108.18x - 48.174 0.53

IRECI 36.847x + 10.951 0.43

SAVI 88.334x - 5.8136 0.51

CMRI 96.184x + 3.2415 0.36

GNDVI 114.15x - 35.615 0.54

RENDVI 80.039x - 26.279 0.34

NDRE 100.11x - 11.121 0.48

WFI 1.9012x + 19.872 0.22

ARVI 113.08x - 49.879 0.52

EVI 69.66x - 1.9731 0.50

MDI 1.1806x + 24.393 0.14



341

Ecological Engineering & Environmental Technology 2025, 26(11), 333–347

carbon stock calculations from 11 vegetation in-
dices at the study site.

Next, the carbon stock calculations from both 
methods were correlated, whereby the spatial 
model with the highest correlation value and best 
RMSE was used as the optimal model for man-
grove AGC estimation (Figure 5). The results 
of AGC model validation using 20 data points 
showed significant differences from the eleven 
Sentinel-2A vegetation indices. The highest Pear-
son correlation coefficient was achieved by SAVI 
(r=0.756), which outperformed EVI (r=0.753) 
and ARVI (r=0.745). NDVI (r=0.722) and GND-
VI (r=0.713) also maintained good performance, 
while CMRI (r=0.248) and MDI (r=0.467) 
showed the lowest correlations. In terms of accu-
racy (RMSE), ARVI had the smallest prediction 
error of 11.86 tons/hectares, followed by SAVI 
(12.17 tons/hectares), EVI (12.35 tons/hectares), 

NDVI (12.36 tons/hectares), and GNDVI (12.38 
tons/hectares). Conversely, CMRI (17.91 tons/
hectares) and MDI (17.64 tons/hectares) showed 
the highest RMSE (Figure 7). The following Ta-
ble 5 presents the correlation results and RMSE 
values of the AGC carbon stock estimation model 
with 11 vegetation indices. Meanwhile, Figure 6 
shows the spatial distribution of AGC resulting 
from the processing of the SAVI vegetation index.

The high accuracy of the SAVI, EVI, and 
ARVI vegetation index processing results indicate 
that soil and atmospheric corrections are very im-
portant in estimating mangrove carbon stocks as-
sociated with ponds, industrial land, and substrate 
variations. EVI is able to overcome the problem 
of NDVI saturation in areas with high biomass 
through the use of the blue band for atmospheric 
correction and canopy background adjustment 
factors, thereby providing higher sensitivity to 

Figure 4. Graph of correlation vegetation index processing with AGC values

Table 4. Carbon stock calculation results using vegetation index
Vegetation indexs Min value Max value Total carbon stock (ton)

RENDVI 0 42.56 486309.86

NDVI 0 47.55 488141.54

NDRE 0 54.93 787041.36

MDI 24 52.78 1234201.39

IRECI 7.6 63.15 756119.17

GNDVI 0 53.50 434493.73

EVI 0 55.36 664222.65
CMRI 0 66.15 515498.85

WFI 3.34 59.54 1142650.23

ARVI 0 47.89 448379.04
SAVI 0 52.60 621828.62
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canopy structure variations (Sun et al., 2020). 
ARVI shows atmospheric resistance four times 
better than NDVI through a self-correction process 
using the blue band to correct for the aerosol effect 
on the red band, which is critical in coastal areas 
with dynamic atmospheric conditions (Wicaksono 
et al., 2016; Yumnaristya et al., 2023). 

DISCUSSION

Based on its spatial distribution, it shows that 
mangroves in the industrial zoning area based on 
spatial planning cover an area of 393.75 hectares. 
Mangroves in the eastern part tend to be fewer be-
cause the area is used for the development of the 
Kendal Industrial Park, while the western part does 
not yet have an industrial area. Mangroves in the 
study area have a spatial distribution pattern that 
is influenced by environmental and anthropogenic 

factors, with most of them scattered along the Bo-
dri River estuary and pond areas that have brackish 
water and sedimentation conditions that support 
mangrove growth. In addition, mangroves grow in 
a linear pattern along the pond area, following the 
boundaries of the pond embankments, where they 
function as a natural buffer zone to reduce erosion 
and as a natural filter that filters water flow from 
the ponds to the sea (van Bijsterveldt et al., 2020; 
Sidik et al., 2021). Furthermore, there are also 
mangroves concentrated along the coastline bor-
dering the open sea, where this area is a tidal zone 
with stable sedimentation conditions. This group 
of mangroves functions as a natural barrier that 
protects the land from waves to prevent abrasion 
and is an important area for carbon storage (Asari 
et al., 2021; Amos and Akib, 2023). Based on its 
distribution pattern, this reflects the adaptation of 
the mangrove ecosystem to environmental condi-
tions and human activities on the Kendal coast, 
where this pattern also reflects that mangroves in 
the region face pressure from land conversion for 
productive enterprises, including industrial estate 
development.

The results of processing related to the cor-
relation between vegetation indices and AGC 
values show that GNDVI has the highest correla-
tion value with AGC values (r=0.543), where the 
GNDVI algorithm uses Green and NIR bands that 
enable it to more effectively reflect the condition 
of mangrove ecosystems with specific spectral 
characteristics, such as chlorophyll content and 
leaf structure (Zhen et al., 2021). Furthermore, 
there are SAVI and EVI indices that have rela-
tively high correlation values, where both indices 
are sensitive to vegetation by reducing the effects 
of the atmosphere and soil (Tran et al., 2022). 

Table 5. Correlation results and RMSE of AGC carbon 
stock estimation model based on vegetation index

Vegetation index Correlation (R) RMSE

NDVI 0.72 12.36

IRECI 0.66 14.02

SAVI 0.76 12.17

CMRI 0.25 17.91

GNDVI 0.71 12.38

RENDVI 0.45 16.05

NDRE 0.69 14.11

WFI 0.56 16.80

ARVI 0.75 11.86

EVI 0.75 12.35

MDI 0.47 17.64

Figure 5. Correlation graph and RMSE of AGC carbon stock estimation model based on vegetation index
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Thus, even though they do not have the highest 
correlation values, both indices can provide accu-
rate information in calculating mangrove biomass 
potential. Conversely, the spectral transforma-
tions MDI (r=0.143) and WFI (r=0.222) show the 
lowest correlation, indicating low sensitivity to 
variations in mangrove carbon stocks in the Ken-
dal coastal area. MDI and WFI are less capable 
of accurately distinguishing variations in carbon 
stocks. Environmental factors such as muddy soil 
conditions, tidal areas, and other non-mangrove 

vegetation mixtures also have the potential to in-
fluence the spectral response captured by these 
two indices, thereby reducing their correlation 
with AGC values in the study area (Vasquez et 
al., 2023). These results show the importance 
of selecting indices with appropriate spectral 
capabilities, such as generic indices NDVI and 
GNDVI, which are capable of capturing biomass, 
while soil-adjusted and atmospherically cor-
rected indices such as SAVI and ARVI provide 
consistent moderate correlations. However, the 

Figure 6. Spatial distribution of AGC results from processing SAVI (R=0.76)

Figure 7. Spatial distribution of AGC results from processing CMRI (R=0.25)
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simultaneous use of several indices can also pro-
vide a more comprehensive picture.

Furthermore, the development of an AGC 
model based on vegetation indices showed a 
high level of accuracy in the processing of SAVI 
(r=0.76), EVI (r=0.75), and ARVI (r=0.75) in-
dices. These values indicate that soil and atmo-
spheric corrections are very important in esti-
mating mangrove carbon stocks associated with 
ponds, industrial land, and substrate variations 
in the Kendal coastal area. SAVI utilizes the 
soil adjustment factor (L) to reduce the effect of 
soil brightness on the spectral canopy of mixed 
soil-mangrove vegetation pixels (Ligono and 
Okolie, 2022; Rhyma et al., 2020). This correc-
tion reduces substrate reflectance bias in sparsely 
canopy mangroves in the intertidal zone, thereby 
improving the accuracy of vegetation cover esti-
mates (Aji et al., 2023). EVI is able to overcome 
the problem of NDVI saturation in areas with 
high biomass by using the blue band for atmo-
spheric correction and canopy background ad-
justment factors, thereby providing higher sensi-
tivity to canopy structure variations (Sun et al., 
2020). ARVI shows atmospheric resistance four 
times better than NDVI through a self-correction 
process using the blue band to correct for the 
aerosol effect on the red band, which is critical 
in coastal areas with dynamic atmospheric condi-
tions (Wicaksono et al., 2016;Yumnaristya et al., 
2023). These three indices physically overcome 
complex spectral challenges resulting from elec-
tromagnetic interactions with the atmosphere, 
ground cover, and vegetation cover, whereas the 
mangrove-specific index fails to address the com-
plexity of pixels mixed with ponds and artificial 
infrastructure. Thus, SAVI, EVI, and ARVI pro-
vide more accurate and precise AGC estimates. 
In addition, the results of the total carbon stock 
calculation also show that the three best indices 
(SAVI, EVI, ARVI) produce relatively consis-
tent carbon stock estimates in the medium-high 
range, thus supporting the validity of the correla-
tion and RMSE test results. However, there are 
indications that some indices, including SAVI and 
EVI, have the potential to slightly underestimate 
areas with dense canopy, while ARVI in some 
industrial-pond locations is assumed to be over-
estimated due to highly sensitive atmospheric 
corrections. This finding is important to note be-
cause it shows that even though the three indices 
are optimal, there is still a spatial bias that needs 

to be further examined so that the AGC estima-
tion results are more representative of variations 
in field conditions.

This study has several limitations that need 
to be addressed in future works, where the AGC 
model developed was only calibrated on the two 
most dominant species, Avicennia marina and 
Rhizophora mucronata, while minor species such 
as Bruguiera, although very few, could potential-
ly contribute to the total carbon stock estimate. 
Therefore, future research should involve the en-
tire composition of mangrove species and map the 
spatial distribution of the community to improve 
the accuracy and transferability of the model 
(Pham et al., 2021; Macreadie, 2019). In addition, 
integrating Sentinel-1 radar data with Sentinel-2 
can reduce mix-pixel and saturation errors that 
commonly occur in heterogeneous land cover in 
industrial areas and fish ponds in the Kendal Coast 
region (Pinkeaw et al., 2024). Considering that 
coastal industrialization can affect the sustainabil-
ity of mangrove ecosystems (Sejati et al., 2020), 
Therefore, the development of an ensemble model 
that combines SAVI, EVI, and ARVI should also 
be attempted (Suardana et al., 2023). Future work 
will support more robust, transferable, and rele-
vant estimates of blue carbon stocks for conserva-
tion policy in coastal industrial areas.

CONCLUSIONS

Based on the research results, it can be con-
cluded that the mangrove ecosystem at the re-
search site covers an area of 492.37 hectares, of 
which approximately 393.75 hectares are located 
in an industrial zone. The accuracy of the random 
forest classification for the mapping is very high at 
around 0.91 and kappa 0.81. The AGC measure-
ments in the field had an average of 31.83 tons/
hectare for the predictor group, while the AGC 
values for the validator group had an average of 
28.9 tons/hectare. The correlation results between 
vegetation indices and AGC show that the GNDVI 
(r=0.543), SAVI (r=0.512), and EVI (r=0.504) in-
dices have a very high to high correlation, while 
the MDI (r=0.143) and WFI (r=0.222) indices have 
the lowest correlation in representing AGC values 
from index values. However, using several indices 
simultaneously to calculate AGC potential can pro-
vide more comprehensive information. The results 
of carbon stock calculations based on vegetation 
indices show an average value of 688,990.21 tons, 
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with the highest calculation results produced by 
the MDI index with a value of 1,234,201.39 tons 
and the GNDVI index producing the lowest esti-
mated value of around 434,494.73 tons. The AGC 
potential mapping model results with the highest 
accuracy were obtained from the SAVI (r=0.76), 
EVI (r=0.75) and ARVI (r=0.75) indices, indicat-
ing that soil and atmospheric correlations are very 
important in estimating mangrove carbon stocks 
associated with ponds, industrial land and coastal 
substrate variations. The results of this study sup-
port the achievement of SDGs Point 11 (Sustain-
able cities and communities) and Point 13 (Cli-
mate action). A limitation of this study is that the 
ACG model developed was only calibrated for two 
dominant species in the study area, namely Avicen-
nia marina and Rhizophora mucronata. Therefore, 
future studies should involve the entire mangrove 
composition at the study site.
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