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ABSTRACT

Based on the Master Plan for the Acceleration and Expansion of Indonesia’s Economic Development Kendal Re-
gency is positioned as the industrial gateway to the Semarang Metropolitan Region. through the development of the
Kendal Industrial Park. The development of the area was carried out by removing approximately 42-210 hectares
of mangrove (2015-2024), so that one of its functions as a carbon absorber and storage medium is reduced. Cal-
culations of the potential carbon stock of existing mangroves are needed as a baseline for identifying the impact
of industrial area expansion. The objective of this study is to produce a baseline of carbon sequestration potential
from mangrove. Research data using Sentinel-2 MSI Level-2A and field survey data measuring AGC parameters.
The research method utilized multispectral random forest classification, spectral transformation, and AGC carbon
stock calculations. The results showed that the mangrove at the study site covered an area of 492.37 hectares, of
which approximately 393.75 hectares were in an industrial zone with a very high mapping accuracy of 0.91. The
AGC measurement results in the field had an average of 31.83 tons/hectare for the predictor group and 31.83 tons/
hectare for the validator group. The correlation results of 11 vegetation indices with AGC show that the GNDVI
(r=0.543), SAVI (1=0.512) and EVI (r=0.504) indices have a very high to high correlation, while the MDI (r=0.143)
and WFI (r=0.222) indices had the lowest correlations. The results of carbon stock calculations based on vegetation
indices show an average value of 688,990.21 tons, with the highest calculation results produced by the MDI index
with a value of 1,234,201.39 tons and the GNDVI index producing the lowest estimated value of approximately
434,494.73 tons. The AGC potential mapping model results with the highest accuracy were obtained from the SAVI
(r=0.76), EVI (r=0.75), and ARVI (1=0.75). Conclusion: The use of appropriate vegetation indices, such as GNDVI,
SAVI, EVI, and ARVI, can provide accurate information regarding the potential carbon stock in mangrove. Recom-
mendation: future studies should involve all minor species compositions at the study site. The results of this study
support the achievement of SDGs Point 11 (Sustainable cities and communities) and Point 13 (Climate action).

Keyword: spatial mapping, mangrove carbon stocks, Sentinel-2.

INTRODUCTION 2021) (Jie et al., 2023). In Indonesia, the industrial
sector is one of the main pillars supporting nation-

The development of industrial areas will have al economic development, backed by abundant

a positive impact on development and economic natural resources such as oil, natural gas, miner-
growth, but on the other hand, it can also lead to a als, and rubber. Based on data from the Ministry
decline in environmental quality (Haryanto et al., of Industry, as of 2023 there are more than 140
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industrial estates developing across the archipela-
go, contributing around 20% to the national gross
domestic product (Sultan, 2024). Industrial estates
in Indonesia are distributed across 24 provinces
with a total area of approximately 70,000 hectares,
of which around 61.76% are located on the island
of Java. Investment in Java’s industrial estates has
increased significantly since 2010, driven by in-
tegration into the global supply chain through the
ASEAN Economic Community (AEC) in 2015.
The development of industrial areas has driven the
growth of Java’s gross domestic product per capita
to 1.5 times the national average (Nugraheni and
Lestari, 2006). Approximately 60% of the indus-
trial areas developed on Java Island were built on
agricultural land, forests, and wetlands that pre-
viously served as ecosystem buffers (Supriatna
and Lenz, 2025). Spatial planning policies that
prioritize industrial investment are a major factor
in accelerating land conversion without adequate
environmental impact assessments. Based on data
from the Ministry of Environment and Forestry,
there has been a significant decline in the environ-
mental quality index from 68.2 in 2019 to 65.4 in
2022, which was caused by a 40% weighting of air
and water degradation due to industry (Sidiq et al.,
2024; Pujiati et al., 2025).

Approximately 70-75% of industrial es-
tate development on Java Island is concentrated
in coastal areas, particularly on the north coast
(Rizal and Apriliani, 2020). This phenomenon is
caused by various factors, such as flat topography
dominated by alluvial plains, which facilitates in-
frastructure development, and the availability of
vast land areas, which facilitates the development
of area-based industries. In addition, the coastal
region of Java has direct connectivity to interna-
tional seaports, which are essential for export-ori-
ented industries, thereby reducing logistics costs
by 30-40%. The region is also accessible by the
North Coast Highway, which is Indonesia’s main
land transportation artery stretching 1.000 km and
serving as the backbone of industrial logistics via
land routes. One of the new areas on Java Island
undergoing regional-based industrial develop-
ment is the Kendal Regency coastline. Based on
the 2011-2025 Master Plan for the Acceleration
and Expansion of Indonesian Economic Develop-
ment, Kendal Regency is positioned as an indus-
trial gateway in the Semarang Metropolitan Re-
gion (SMR) with the development of the Kendal
Industrial Park (KIP), which began operations in
2013. The establishment of KIP is in accordance

334

with the 2011-2031 spatial planning of Kendal
Regency, which designates the eastern coastal
area as the center for KIP development. KIP was
developed in Brangong District and Kaliwungu
District in 2016 in an area of 2.200 hectares (Cho-
lis et al., 2023; Baihaqi et al, 2019).

The development of KIP resulted in changes
in land use, where during 2005-2017 there was an
increase in built-up land 0f 289.52 hectares by con-
verting 65.92 hectares of vegetation area (Sadewo
and Buchori, 2018), one of them is the mangrove
ecosystem (Sidiq et al., 2024). The expansion of
KIP into the coastal areas of Brangsong and Ka-
liwungu has resulted in a reduction in mangrove
area of approximately 42-210 hectares (2015—
2024). The 2023 mangrove ecosystem identifica-
tion results show an area of approximately 120.99
hectares, of which only about 20.40 hectares are in
good condition. Mangroves are endemic ecosys-
tems in coastal areas that play an important role
in absorbing and storing carbon from the atmo-
sphere, where mangrove carbon stocks are cal-
culated based on the biomass of trees growing in
that location (Ray et al., 2011). Mangrove carbon
stock measurements are obtained from several
parameters, including: stem diameter, tree height,
and mangrove species. The measurement results
are then used to calculate carbon sequestration us-
ing a standard conversion factor of approximately
47% of the dry biomass of mangroves. The carbon
stock in mangrove biomass can reach hundreds of
tons per hectare, with one hectare of mangroves
capable of sequestering and storing around 300—
400 tons of carbon, depending on the location, age,
and condition of the ecosystem (Harishma et al.,
2020). Based on this description, there is an urgent
need for research on the importance of calculating
the potential carbon stock of existing mangroves
as basic data for identifying the impact of indus-
trial area expansion. In addition, the data obtained
can be used as a baseline for projecting the decline
in carbon stock due to land conversion and design-
ing mangrove conservation strategies. This study
aims to compile a baseline of carbon sequestration
potential from mangrove ecosystems and identify
the accuracy levels of various types of vegetation
indices in calculating above ground carbon (AGC)
on the coast of Kendal Regency.

The calculation of mangrove carbon stock po-
tential can use the spectral transformation method
of remote sensing imagery through canopy den-
sity-based vegetation indices. This method has
several advantages that make it very effective and
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efficient, namely fast calculation estimates cover-
ing a very large area, utilizing imagery data with
various temporal resolutions and levels of detail
(Huang et al., 2021). This enables dynamic, real-
time monitoring of carbon stocks, which is cru-
cial for detecting changes in land use in coastal
areas. The calculation of potential carbon stocks
in this study uses 11 vegetation indices, each of
which has varying sensitivity in recording spec-
tral responses. Therefore, the use of 11 indices is
expected to provide more comprehensive informa-
tion on variations in biomass and carbon stocks in
the field. This approach is a novelty in research,
where previous studies only used 2-3 vegetation
indices, whereas this study uses 11 vegetation in-
dices that can make an important contribution with
variations in methods for calculating carbon stocks
with varying degrees of accuracy. This study uses
primary data from Sentinel-2 MSI Level-2A imag-
ery obtained from the Google Earth Engine (GEE)
platform, Sentinel 2A provides 10-20 meter multi-
spectral data capable of recording mangrove veg-
etation structures with good accuracy. In addition,
these images have high temporal resolution (5
days), enabling dynamic and periodic monitoring
of carbon stock changes. Next, for data processing,
we utilized a classification model using the random
forest (RF) algorithm on the GEE platform, which
was chosen for its high accuracy and robustness
against noise, with a configuration of 100 decision
trees and five variables per split (Fariz and Faniza,
2023;Amalia et al., 2024).

METHODOLOGY

Research sites

The mangrove ecosystem on the coast of
Kendal Regency is geographically located on the

north coast of Central Java, covering four subdis-
tricts, namely Patebon, Kendal City, Brangsong,
and Kaliwungu. Based on Kendal Regency’s
Spatial Planning, the area has been designated
as a developing industrial area. The spatial dis-
tribution of mangroves is found in pond embank-
ments and tidal areas of varying widths. This area
is strategic because it is located between indus-
trial development and natural coastal ecosystems,
making it an important area to study in the con-
text of blue carbon conservation amid industrial
development pressures. The following image
shows the location of coastal research in Kendal
Regency (Figure 1).

Satellite image data collection

The data used in this study are Sentinel-2 MSI
Level-2A images from the GEE platform. These
images are surface reflectance products that have
been atmospherically corrected and orthorectified
using the UTM/WGS84 projection system. Level-
2A products were chosen because they have been
processed using a digital elevation model (DEM)
to project the images into accurate cartographic
coordinates. The specifications of the Sentinel-2A
images used include:

e Spatial resolution 10 meter — Band Blue
(~490 nm), Green (~560 nm), Red (~665 nm),
NIR (~842 nm).

e Spatial resolution 20 meter — Band Vegeta-
tion Red Edge (~705 nm, ~740 nm, ~783nm,
~865nm), dan SWIR (~1610 nm dan
~2190 nm).

e Spatial resolution 60 meter — Band Coastal
Aerosol (~443 nm), Water Vapour (~940 nm),
dan Cirrus (~1375 nm).

The image acquisition period was selected
between April and May 2025, considering that
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Figure 1. Research sites
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this period marks the beginning of the dry season,
thereby minimizing cloud cover. This timing also
takes into account tidal conditions and optimal
mangrove vegetation activity for spectral analy-
sis. The images used are limited by a cloud cover
criterion of less than 20% to ensure good data
quality. Cloud masking is performed using the
quality assessment (QA60) band and the median
reducer function available on the GEE platform.

Field data collection

Data collection was adjusted to the satellite
image acquisition period to ensure temporal con-
sistency between field data and remote sensing
data. A total of 80 sample points were taken using
stratified random sampling adjusted for accessi-
bility at each location. The sampling points were
divided proportionally based on the spatial char-
acteristics of mangroves in each region. Further-
more, sample point measurements were carried
out with the following conditions:

Each sampling location uses a square plot
measuring 10 x 10 meters in accordance with the
spatial resolution of Sentinel-2A imagery. Tran-
sect lines are drawn perpendicular to the coast-
line or river towards the mainland, adjusted to the
shape of pixels in remote sensing imagery.

Mangrove species identification was carried
out using an ecological approach, taking into
account mangrove characteristics and growth
zones. Breast height diameter was measured on
each plot for trees with a diameter >10 cm be-
cause this size contributes significantly to the
estimation of above-ground biomass. Stem di-
ameter was measured at adult breast height or
approximately 1.3 meters above ground level,
with measurement rules adjusted for the irregular
conditions of mangrove stems.

A total of 80 samples were collected in the
field. These were then divided into 60 samples
as predictors and 20 samples as validators. This
was based on the study (Sugara et al., 2022) and
(Hidayah et al., 2022) which used 60 samples,
which is more than other studies (Suardana and
Nandika, 2023).

Sentinel-2 image processing

The classification of mangrove and non-man-
grove cover was carried out on the GEE platform
using Sentinel-2 MSI Level-2A composite im-
ages with cloud cover < 20%. The cloud masking
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process utilized the QA60 band and median re-
ducer function to produce cloud-free annual com-
posites in Kendal Regency and its surroundings.
The classification model uses the RF algorithm,
which was chosen for its high accuracy and ro-
bustness against noise, with a configuration of
100 decision trees and five variables per split
(Fariz and Faniza, 2023)(Amalia et al., 2024).
The ‘Connected Pixel Count’ spatial filter in GEE
is applied to eliminate pixel noise, retaining only
areas with > 10 connected pixels.

In the classification, this study used 300 points
(100 mangroves, 200 non-mangroves) as training
samples. The training samples were collected us-
ing stratified random sampling to represent man-
grove, water/pond, built-up land, non-mangrove
vegetation, and open land classes. Input features
include all bands from Sentinel-2A, both 10 m
and 20 m resolution. (Farzanmanesh et al., 2024),
as well as vegetation indices such as NDVI, water
indices such as NDWI, and built-up land indices
such as NDBI. NDVI and NDWTI are used to fa-
cilitate the separation of aquaculture ponds and
mangroves (Gupta et al., 2018), while NDBI was
involved because it is sensitive to developed land,
including industries located in some parts of the
study area (Fariz and Faniza, 2023). Next, a vali-
dation sample of 250 points was also taken to test
the accuracy of the classification results, which
were later calculated using the kappa method.

Vegetation index processing

This study compares eleven vegetation indi-
ces to develop a model for estimating mangrove
carbon stocks above ground. The vegetation indi-
ces used are shown in the following Table 1.

A comparison of 11 Sentinel-2A image-based
vegetation indices was conducted to identify and
model carbon stocks in mangrove ecosystems.
Generic indices such as NDVI and GNDVI are
effective for mapping the extent of mangroves be-
cause they reflect general vegetation through dif-
ferences in NIR and red or green band reflectance.
The SAVI index helps reduce bias due to back-
ground soil variation at the edges of open man-
grove forests by adjusting NDVI values using a
soil constant (L) (Zhen et al., 2021). Meanwhile,
the ARVI and EVI indices improve the accuracy
of biomass estimates in coastal areas that are of-
ten foggy or smoky through blue band correction
and additional coefficients to reduce the effects of
aerosols (Tran et al., 2022). Specialized mangrove
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Table 1. Vegetation index algorithm

Vegetation index

Algorithm References

NDVI (normalized difference vegetation index)

(NIR - Red) / (NIR + Red)

Rouse, 1973

(Fariz nad Faniza, 2023)IRECI (inverted red edge
chlorophyll index)

(NIR — Red) / (Red Edge 1/ Red Edge 2)

Frampton et al, 2013

SAVI (soil-adjusted vegetation index) 0.5)

((NIR—-Red)/(NIR + Red + 0.5)) x (1 +

Huete, 1988

CMRI (combined mangrove recognition index)

NDVI — NDWI

Gupta et al, 2018

GNDVI (green normalized difference vegetation
index)

(NIR - Green) / (NIR + Green)

Gitelson and Merzlyak, 1996

RENDVI (red-edge normalized difference
vegetation)

(Red Edge 2 — Red) / (Red Edge 2 + Red) | Fernandez-Manso et al, 2016

NDRE (normalized difference red-edge)

(NIR — Red Edge) / (NIR + Red Edge)

Barnes et al, 2000)

WFI (wetland forest index)

(NIR — Red) / SWIR2

Jiaetal, 2019

ARVI (atmospherically resistant vegetation index)

(NIR — (Red — (Red — Blue))) / (NIR +
(Red — (Red — Blue)))

Kaufman and Tanre, 1992

EVI (enhanced vegetation index)

25x ((NIR-Red)/(NIR+6 xRed-7.5
x Blue + 1))

Hueta, 2002

MDI (mangrove discrimination index)

(NIR — SWIR2) / SWIR2

Wang et al, 2018

indices such as CMRI utilize differences in green-
ness and water content in mangrove leaves to im-
prove the discrimination of mangroves from non-
mangrove vegetation (Mishra and Sethi, 2023),
while MDI highlights the spectral characteristics
typical of mangroves under saline water pressure
with a combination of red edge and NIR bands
(Vasquez et al., 2023).

Furthermore, red-edge-based indices (IRECI,
RENDVI, NDRE) proved to be more sensitive to
chlorophyll content and mangrove leaf structure (
Suardana et al., 2023; (Farzanmanesh et al., 2024;
Munawaroh et al., 2025), thereby improving car-
bon stock estimates in the upper canopy layer. The
WFI index is specifically designed for the identi-
fication of swamp forests, including mangroves,
by highlighting conditions of high humidity (Jia
et al., 2019), and EVI can overcome NDVI satu-
ration in dense canopy cover, which is common
in mature mangroves (Tran et al., 2022). By com-
paring these various indices, the most accurate
index for mapping mangrove carbon stocks under
various environmental conditions can be identi-
fied (Nguyen, 2021).

Above ground carbon estimates

Above ground carbon (AGC) estimates were
obtained from field data that had been collected.
Before obtaining AGC values, the biomass above
the mangrove soil surface was calculated for each
species found.. The mangrove species identified in
this study were Avicennia marina and Rhizophora

mucronata, because although there are 11 types of
mangroves in the study area, these two species are
very dominant throughout the area (Irsadi et al.,
2025). AGC calculations use allometric equations
specifically designed for Asian mangroves, mak-
ing them highly relevant for use in Indonesia. The
allometric equations used in this study (Table 2)
are calculated from AGB based on the standard
published in Indonesian National Standard (SNI)
7724:2011, whereby 0.47 or 47% of biomass is
carbon. AGC is calculated using the equation:

AGC=AGB x 047. (D)

Above ground carbon model development

The development of the above-ground carbon
estimation model in this study used 80 sample
points from field measurements, which were di-
vided into 60 predictor data (75%) and 20 vali-
dator data (25%) following common practices
in statistical modeling. The modeling approach
uses simple linear regression analysis for one in-
dependent variable, with AGC as the dependent
variable and 11 Sentinel-2A vegetation indices
as independent variables. The model develop-
ment stages began with a correlation analysis be-
tween each vegetation index and field AGC using
60 predictor data, followed by the construction
of linear regression equations for each vegeta-
tion index. Once the linear regression equations
have been constructed, the next step is to apply
the regression equations to Sentinel-2A images to
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Table 2. Alomertrik equation for above ground carbon estimation

Species Algorithm Wood density References
Rhizophora mucronata B =0.128 x D*2.60 0.8483 Fromard et al., (1998)
Avicenia marina B =0.1848 x D"2.2 0.6700 Hakim et al, 2016; Farahisah and Yulianda, 2021

Note: D is the DBH of the tree in cm; p is the wood density in g cm™.

produce 11 vegetation index-based AGC models.
Finally, the models are validated using correlation
(R) and root mean square error (RMSE).

Next, model validation was performed using
20 validator data that had been set aside to test
the accuracy of each AGC model prediction. The
best model was selected based on the combina-
tion of the highest R value (> 0.6 as a sufficiently
high accuracy threshold) and the lowest RMSE to
minimize prediction errors. The formula used is
as follows.

RMSE = )
(Y " predict - Y _observe) ?/ n)

MAE = 2|Y predict - Y _observe|/n 3)
where: n is the number of validation samples.

The model with the highest R? and lowest
RMSE will be selected as the best model for es-
timating mangrove carbon stocks in coastal ar-
eas in Kendal Regency. The following Figure 2
shows the research flowchart.

RESULT AND DISCUSSION

Mangrove mapping in research study based
multispectral classification

Mangrove mapping using multispectral clas-
sification poses its own challenges, as these
objects are highly susceptible to mix-pixel in
medium-to-low resolution images. The study
site is a mangrove ecosystem associated with
industrial areas, fish ponds, settlements, and ag-
ricultural land (Fariha et al., 2021; Sidiq et al.,
2025; Fariz et al., 2025), potential misclassifica-
tion of mapped mangroves due to mix-pixel, es-
pecially for mangrove objects around fish ponds
(Rahmandhana and Kamal, 2022). In general, the
difference between mangrove and non-mangrove
objects in Sentinel-2A RGB false color composite
images (NIR, SWIR, red) is clearly visible, with
mangroves appearing darker due to their rela-
tively high NIR, SWIR, and red values. The NIR
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and red bands are sensitive to vegetation green-
ness, while the SWIR band is highly responsive
to soil moisture affected by tides. Thus, with this
approach, mangrove mapping can be carried out
more accurately despite the challenges of land
cover heterogeneity in industrial coastal areas.
This study used Sentinel-2A composite im-
ages to map mangroves on the coast of Kendal
Regency, specifically in Patebon District, Kendal
City District, Brangsong District, and Kaliwungu
District, with the results detecting 492.37 hect-
ares of mangroves. Random Forest classification
produced very high accuracy, with an overall
accuracy of 0.91 and a kappa of 0.81. This high
level of accuracy was possible due to the limited
number of classes used, uniform sampling points,
and consideration of tides and cloud cover. The
classification results were highly consistent with
field data, but the mapping results still contained
classification errors, where wet agricultural land
and shrubs around the ponds were still included in
the mangrove class. This required manual inter-
vention, namely visual interpretation to separate
the classification results (Fariz et al, 2024). The
following image shows the spatial distribution of
mangroves at the research site (Figure 3).

Carbon stock calculation based above ground
carbon

Carbon stock is the amount of carbon stored
in various types of ecosystems, such as vegeta-
tion biomass, with one calculation method using
AGC focusing on estimating the carbon stored in
mangrove biomass above ground, such as trunks,
leaves, branches, and fruit. Field measurements
of mangrove carbon stock at the research site
showed that the range of carbon values above
ground level varied considerably, reflecting the
heterogeneity of mangrove vegetation in the tran-
sitional area between fishponds and industrial
areas on the Kendal coast. In the predictor data
group, AGC values ranged from 4.66 to 79.95
tons/hectare, with an average of 31.83 tons/hect-
are, while in the validator data, the range of values
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was between 2.32 and 60.90 tons/hectare, with
an average of 28.9 tons/hectare. This difference
indicates structural and physiological variations
between mangrove plots due to environmental
factors such as salinity, water depth, and anthro-
pogenic pressure. These values were then used as
a basis for testing the relationship between actual
carbon stocks in the field and various vegetation

indices resulting from the transformation of Sen-
tinel-2A images, with the aim of assessing the
extent to which spectral parameters can represent
variations in biomass and carbon stocks in man-
grove ecosystems spatially.

After obtaining the AGC measurement results,
a correlation test was conducted with vegetation
indices, where 11 vegetation indices were used in
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this study, each with its own characteristics, and
tested in the field to obtain correlation values (R),
where a stronger correlation is indicated by an R
value closer to 1. The results of linear regression
analysis between field AGC values and 11 vegeta-
tion indices from Sentinel-2A imagery show that
GNDVI has the highest correlation (r = 0.543),
followed by NDVI (r=0.534), ARVI (1=0.523),
SAVI (r=0.512), and EVI (=0.504). Based on
these correlation values, these five indices pro-
vide an overview that the differences in the NIR,
Red, and Green bands directly capture variations
in mangrove biomass well. Based on the results
of the linear regression analysis, GNDVI showed
the highest correlation value with AGC (1=0.543),
indicating that this index is more sensitive in re-
sponding to variations in mangrove biomass than
other indices. Furthermore, there are SAVI and
EVI indices that have relatively high correlation
values, where both indices are sensitive to vegeta-
tion by reducing the effects of the atmosphere and
soil. The following Table 3 presents the correla-
tion between the results of vegetation index pro-
cessing and AGC values at the research location.

Conversely, the spectral transformations MDI
(r=0.143) and WFI (1=0.222) showed the lowest
correlation, indicating low sensitivity to varia-
tions in mangrove carbon stocks in the Kendal
coastal area. Based on the correlation values ob-
tained, these two vegetation indices are less effec-
tive for mapping variations in mangrove biomass,
which are more influenced by vegetation struc-
ture and density, but are more sensitive in reflect-
ing moisture conditions or water content around
vegetation, such as ponds and marine waters. In
addition, mangroves with varying moisture levels

Table 3. Correlation results of vegetation index
processing with AGC values

Vegetation Linear regression Correlation
index equation (R)
NDVI 108.18x - 48.174 0.53
IRECI 36.847x + 10.951 0.43
SAVI 88.334x - 5.8136 0.51
CMRI 96.184x + 3.2415 0.36

GNDVI 114.15x - 35.615 0.54
RENDVI 80.039x - 26.279 0.34
NDRE 100.11x - 11.121 0.48
WFI 1.9012x + 19.872 0.22
ARVI 113.08x - 49.879 0.52
EVI 69.66x - 1.9731 0.50
MDI 1.1806x + 24.393 0.14
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also affect MDI and WFI values differently, mak-
ing these two indices less capable of accurately
distinguishing variations in carbon stocks. The
following Figure 4 shows the correlation between
actual carbon stocks and the results of processing
the Sentinel 2A image vegetation index.

Calculation and correlation of carbon stock
values based on spectral transformation

of vegetation indices with above ground
carbon

Carbon stock calculations were performed
using the spectral transformation method of 11
vegetation indices based on canopy density and
through potential calculations using the AGC ap-
proach based on field parameter calculations. The
results of the calculations using both methods
were then tested for accuracy using the RMSE
method and for precision using correlation. Based
on the results of total carbon stock calculations
from various vegetation indices, there appears to
be significant variation in values. The MDI in-
dex produced the highest carbon stock estimate,
reaching approximately 1,234,201.39 tons, which
indicates its sensitivity to variations in mangrove
biomass structure. Conversely, the GNDVI in-
dex provided the lowest estimate, approximately
434,494.73 tons, a value that reflects its limita-
tions in capturing canopy dynamics in mangrove
ecosystems. In general, the average total carbon
stock of the eleven vegetation indices reached
688,990.21 tons with a median value of around
621,829.56 tons, where the variation in values
indicates that most indices produce relatively
consistent estimates in the middle range. Based
on the total carbon stock table, the three vegeta-
tion indices that showed the best performance in
the correlation and RMSE tests, namely SAVI,
EVI, and ARVI, also showed high and consistent
carbon stock estimation results. SAVI recorded a
total carbon stock of approximately 621,828.62
tons, followed by EVI with 664,222.65 tons, and
ARVI with 448,379.04 tons. These values con-
firm that, in addition to excelling in model accu-
racy (high correlation and low RMSE), the three
indices are also capable of representing the po-
tential carbon stock of mangroves in significant
amounts. The differences in results between the
indices further reinforce the reasons why SAVI,
EVI, and ARVI are considered the optimal indi-
ces for mapping AGC potential in mangrove ar-
eas. The following Table 4 shows the results of
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Figure 4. Graph of correlation vegetation index processing with AGC values

carbon stock calculations from 11 vegetation in-
dices at the study site.

Next, the carbon stock calculations from both
methods were correlated, whereby the spatial
model with the highest correlation value and best
RMSE was used as the optimal model for man-
grove AGC estimation (Figure 5). The results
of AGC model validation using 20 data points
showed significant differences from the eleven
Sentinel-2A vegetation indices. The highest Pear-
son correlation coefficient was achieved by SAVI
(r=0.756), which outperformed EVI (r=0.753)
and ARVI (r=0.745). NDVI (r=0.722) and GND-
VI (r=0.713) also maintained good performance,
while CMRI (r=0.248) and MDI (r=0.467)
showed the lowest correlations. In terms of accu-
racy (RMSE), ARVI had the smallest prediction
error of 11.86 tons/hectares, followed by SAVI
(12.17 tons/hectares), EVI (12.35 tons/hectares),

NDVI (12.36 tons/hectares), and GNDVI (12.38
tons/hectares). Conversely, CMRI (17.91 tons/
hectares) and MDI (17.64 tons/hectares) showed
the highest RMSE (Figure 7). The following Ta-
ble 5 presents the correlation results and RMSE
values of the AGC carbon stock estimation model
with 11 vegetation indices. Meanwhile, Figure 6
shows the spatial distribution of AGC resulting
from the processing of the SAVI vegetation index.

The high accuracy of the SAVI, EVI, and
ARVI vegetation index processing results indicate
that soil and atmospheric corrections are very im-
portant in estimating mangrove carbon stocks as-
sociated with ponds, industrial land, and substrate
variations. EVI is able to overcome the problem
of NDVI saturation in areas with high biomass
through the use of the blue band for atmospheric
correction and canopy background adjustment
factors, thereby providing higher sensitivity to

Table 4. Carbon stock calculation results using vegetation index

Vegetation indexs Min value Max value Total carbon stock (ton)

RENDVI 0 42.56 486309.86
NDVI 0 47.55 488141.54
NDRE 0 54.93 787041.36
MDI 24 52.78 1234201.39
IRECI 7.6 63.15 756119.17
GNDVI 53.50 434493.73
EVI 55.36 664222.65
CMRI 66.15 515498.85
WFI 3.34 59.54 1142650.23
ARVI 47.89 448379.04
SAVI 52.60 621828.62
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Table 5. Correlation results and RMSE of AGC carbon
stock estimation model based on vegetation index

Vegetation index Correlation (R) RMSE
NDVI 0.72 12.36
IRECI 0.66 14.02
SAVI 0.76 1217
CMRI 0.25 17.91

GNDVI 0.71 12.38
RENDVI 0.45 16.05
NDRE 0.69 14.11
WFI 0.56 16.80
ARVI 0.75 11.86
EVI 0.75 12.35
MDI 0.47 17.64

canopy structure variations (Sun et al., 2020).
ARVI shows atmospheric resistance four times
better than NDVI through a self-correction process
using the blue band to correct for the aerosol effect
on the red band, which is critical in coastal areas
with dynamic atmospheric conditions (Wicaksono
et al., 2016; Yumnaristya et al., 2023).

DISCUSSION

Based on its spatial distribution, it shows that
mangroves in the industrial zoning area based on
spatial planning cover an area of 393.75 hectares.
Mangroves in the eastern part tend to be fewer be-
cause the area is used for the development of the
Kendal Industrial Park, while the western part does
not yet have an industrial area. Mangroves in the
study area have a spatial distribution pattern that
is influenced by environmental and anthropogenic

17,91

7N

4 0\
12,3 2,17 12, 38

0,72——0,66—
NDVI IRECI SAVI CMRI

16, 05\l
4,11

factors, with most of them scattered along the Bo-
dri River estuary and pond areas that have brackish
water and sedimentation conditions that support
mangrove growth. In addition, mangroves grow in
a linear pattern along the pond area, following the
boundaries of the pond embankments, where they
function as a natural buffer zone to reduce erosion
and as a natural filter that filters water flow from
the ponds to the sea (van Bijsterveldt et al., 2020;
Sidik et al., 2021). Furthermore, there are also
mangroves concentrated along the coastline bor-
dering the open sea, where this area is a tidal zone
with stable sedimentation conditions. This group
of mangroves functions as a natural barrier that
protects the land from waves to prevent abrasion
and is an important area for carbon storage (Asari
et al., 2021; Amos and Akib, 2023). Based on its
distribution pattern, this reflects the adaptation of
the mangrove ecosystem to environmental condi-
tions and human activities on the Kendal coast,
where this pattern also reflects that mangroves in
the region face pressure from land conversion for
productive enterprises, including industrial estate
development.

The results of processing related to the cor-
relation between vegetation indices and AGC
values show that GNDVI has the highest correla-
tion value with AGC values (r=0.543), where the
GNDVI algorithm uses Green and NIR bands that
enable it to more effectively reflect the condition
of mangrove ecosystems with specific spectral
characteristics, such as chlorophyll content and
leaf structure (Zhen et al., 2021). Furthermore,
there are SAVI and EVI indices that have rela-
tively high correlation values, where both indices
are sensitive to vegetation by reducing the effects
of the atmosphere and soil (Tran et al., 2022).
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Figure 5. Correlation graph and RMSE of AGC carbon stock estimation model based on vegetation index
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Figure 7. Spatial distribution of AGC results from processing CMRI (R=0.25)

Thus, even though they do not have the highest
correlation values, both indices can provide accu-
rate information in calculating mangrove biomass
potential. Conversely, the spectral transforma-
tions MDI (r=0.143) and WFI (r=0.222) show the
lowest correlation, indicating low sensitivity to
variations in mangrove carbon stocks in the Ken-
dal coastal area. MDI and WFI are less capable
of accurately distinguishing variations in carbon
stocks. Environmental factors such as muddy soil
conditions, tidal areas, and other non-mangrove

vegetation mixtures also have the potential to in-
fluence the spectral response captured by these
two indices, thereby reducing their correlation
with AGC values in the study area (Vasquez et
al., 2023). These results show the importance
of selecting indices with appropriate spectral
capabilities, such as generic indices NDVI and
GNDVI, which are capable of capturing biomass,
while soil-adjusted and atmospherically cor-
rected indices such as SAVI and ARVI provide
consistent moderate correlations. However, the
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simultaneous use of several indices can also pro-
vide a more comprehensive picture.
Furthermore, the development of an AGC
model based on vegetation indices showed a
high level of accuracy in the processing of SAVI
(r=0.76), EVI (r=0.75), and ARVI (r=0.75) in-
dices. These values indicate that soil and atmo-
spheric corrections are very important in esti-
mating mangrove carbon stocks associated with
ponds, industrial land, and substrate variations
in the Kendal coastal area. SAVI utilizes the
soil adjustment factor (L) to reduce the effect of
soil brightness on the spectral canopy of mixed
soil-mangrove vegetation pixels (Ligono and
Okolie, 2022; Rhyma et al., 2020). This correc-
tion reduces substrate reflectance bias in sparsely
canopy mangroves in the intertidal zone, thereby
improving the accuracy of vegetation cover esti-
mates (Aji et al., 2023). EVI is able to overcome
the problem of NDVI saturation in areas with
high biomass by using the blue band for atmo-
spheric correction and canopy background ad-
justment factors, thereby providing higher sensi-
tivity to canopy structure variations (Sun et al.,
2020). ARVI shows atmospheric resistance four
times better than NDVI through a self-correction
process using the blue band to correct for the
aerosol effect on the red band, which is critical
in coastal areas with dynamic atmospheric condi-
tions (Wicaksono et al., 2016;Yumnaristya et al.,
2023). These three indices physically overcome
complex spectral challenges resulting from elec-
tromagnetic interactions with the atmosphere,
ground cover, and vegetation cover, whereas the
mangrove-specific index fails to address the com-
plexity of pixels mixed with ponds and artificial
infrastructure. Thus, SAVI, EVI, and ARVI pro-
vide more accurate and precise AGC estimates.
In addition, the results of the total carbon stock
calculation also show that the three best indices
(SAVI, EVI, ARVI) produce relatively consis-
tent carbon stock estimates in the medium-high
range, thus supporting the validity of the correla-
tion and RMSE test results. However, there are
indications that some indices, including SAVI and
EVI, have the potential to slightly underestimate
areas with dense canopy, while ARVI in some
industrial-pond locations is assumed to be over-
estimated due to highly sensitive atmospheric
corrections. This finding is important to note be-
cause it shows that even though the three indices
are optimal, there is still a spatial bias that needs
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to be further examined so that the AGC estima-
tion results are more representative of variations
in field conditions.

This study has several limitations that need
to be addressed in future works, where the AGC
model developed was only calibrated on the two
most dominant species, Avicennia marina and
Rhizophora mucronata, while minor species such
as Bruguiera, although very few, could potential-
ly contribute to the total carbon stock estimate.
Therefore, future research should involve the en-
tire composition of mangrove species and map the
spatial distribution of the community to improve
the accuracy and transferability of the model
(Pham et al., 2021; Macreadie, 2019). In addition,
integrating Sentinel-1 radar data with Sentinel-2
can reduce mix-pixel and saturation errors that
commonly occur in heterogeneous land cover in
industrial areas and fish ponds in the Kendal Coast
region (Pinkeaw et al., 2024). Considering that
coastal industrialization can affect the sustainabil-
ity of mangrove ecosystems (Sejati et al., 2020),
Therefore, the development of an ensemble model
that combines SAVI, EVI, and ARVI should also
be attempted (Suardana et al., 2023). Future work
will support more robust, transferable, and rele-
vant estimates of blue carbon stocks for conserva-
tion policy in coastal industrial areas.

CONCLUSIONS

Based on the research results, it can be con-
cluded that the mangrove ecosystem at the re-
search site covers an area of 492.37 hectares, of
which approximately 393.75 hectares are located
in an industrial zone. The accuracy of the random
forest classification for the mapping is very high at
around 0.91 and kappa 0.81. The AGC measure-
ments in the field had an average of 31.83 tons/
hectare for the predictor group, while the AGC
values for the validator group had an average of
28.9 tons/hectare. The correlation results between
vegetation indices and AGC show that the GNDVI
(r=0.543), SAVI (1=0.512), and EVI (1=0.504) in-
dices have a very high to high correlation, while
the MDI (r=0.143) and WFI (r=0.222) indices have
the lowest correlation in representing AGC values
from index values. However, using several indices
simultaneously to calculate AGC potential can pro-
vide more comprehensive information. The results
of carbon stock calculations based on vegetation
indices show an average value of 688,990.21 tons,
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with the highest calculation results produced by
the MDI index with a value of 1,234,201.39 tons
and the GNDVI index producing the lowest esti-
mated value of around 434,494.73 tons. The AGC
potential mapping model results with the highest
accuracy were obtained from the SAVI (1=0.76),
EVI (r=0.75) and ARVI (r=0.75) indices, indicat-
ing that soil and atmospheric correlations are very
important in estimating mangrove carbon stocks
associated with ponds, industrial land and coastal
substrate variations. The results of this study sup-
port the achievement of SDGs Point 11 (Sustain-
able cities and communities) and Point 13 (Cli-
mate action). A limitation of this study is that the
ACG model developed was only calibrated for two
dominant species in the study area, namely Avicen-
nia marina and Rhizophora mucronata. Therefore,
future studies should involve the entire mangrove
composition at the study site.
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