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INTRODUCTION

The Intergovernmental Panel on Climate 
Change (IPCC) in 2023 predicts that the global 
temperature increase will reach or exceed 1.5 °C 
or 2.7 °F between 2021 and 2040. According to 
Thomas et al. (2014), tropical countries, includ-
ing Indonesia, are vulnerable to hydrometeoro-
logical disasters, such as droughts triggered by 
climate change. The phenomenon of drought in 
tropical regions not only threatens food security, 
but also has direct implications for the availabili-
ty of water, land degradation, and socio-economic 
stability of the community.

Research on drought has been conducted in 
several tropical countries, including the Phil-
ippines, especially in the Ilocos Norte region 
(Alonzo et al., 2023), India (Chuphal et al., 2024), 

Malaysia (Hasan et al., 2021), Brazil (Cunha et al., 
2019), and Indonesia (Amalo et al., 2018; Nursa-
putra et al., 2021). However, most of these stud-
ies focused on a national or regional scale without 
detailed spatial mapping at the watershed level. In 
fact, watersheds are an ideal hydrological unit for 
understanding the interaction between biophysical 
factors and human activity on drought dynamics.

The Bila watershed is one of the watersheds 
in South Sulawesi that administratively crosses 
Sidrap, Wajo, and Enrekang Regencies. Research 
by Rahmat et al. (2023) indicated that the Bila 
watershed has experienced significant changes in 
land cover, with approximately 915.96 hectares 
of secondary forest converted to agricultural land. 
A 0.7% decrease in forest cover could substan-
tially reduce water availability and increase sur-
face runoff by up to 45% (Garg et al., 2019). The 
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increased runoff contributes to sedimentation in 
Lake Tempe, which serves as the main reservoir 
for flows from the Bila watershed, thereby reduc-
ing water tamping capacity and increasing the risk 
of drought and flooding. According to Cahyono et 
al. (2024), the annual sediment thickness in Lake 
Tempe ranges from 20–40 cm.

Historical data on drought events in South 
Sulawesi from the National Disaster Manage-
ment Agency (BNPB) show that from 2000–
2023, 169 drought events occurred. The Central 
Statistics Agency noted that the 2023 drought af-
fected and displaced 211,086 people, with 11,582 
of them residing in the Wajo and Sidrap Regen-
cies. However, there has not been a comprehen-
sive spatial study of drought-prone zones in the 
Bila watershed. This information is important to 
support mitigation and early warning strategies, 
considering that this region plays a strategic role 
in providing water for Lake Tempe and the sur-
rounding area.

Previous research in South Sulawesi, Indo-
nesia generally used drought indices (Nursapu-
tra et al., 2021; Senjani et al., 2020), but has not 
integrated spatial statistical approaches to quan-
titatively assess vulnerability. In addition, most 
studies focus only on drought intensity, without 
considering biophysical and land use factors that 
contribute to the region’s vulnerability to drought. 
This gap demonstrates the need for more objec-
tive and probabilistic-based mapping methods to 
assess drought vulnerability spatially.

The frequency ratio (FR) method is known 
to have a high level of precision in disaster vul-
nerability assessment based on spatial data (Lee 
et al., 2012). The FR method has been widely 
used in landslide vulnerability mapping (Addis, 
2023; Cantarino et al., 2023), flood hazard anal-
ysis (Rahmati et al., 2015; Wang et al., 2021), 
and soil erosion studies (Islam et al., 2022), but 
its application in drought vulnerability mapping 
is still very limited. Therefore, this study seeks 
to bridge this gap by applying the FR method to 
identify the factors that have the most influence 
on drought vulnerability in the Bila watershed. 
Specifically, this study aims to identify the main 
factors contributing to drought in the Bila Water-
shed and applying the FR method in spatial map-
ping of drought susceptibility.

The novelty of this study lies in the appli-
cation of the FR method in mapping drought 
vulnerability at the watershed level, which has 
not been widely done in the tropical context of 

Indonesia. The results of this research are ex-
pected to strengthen the scientific basis in the de-
velopment of early warning systems and climate 
change adaptation strategies in the Bila watershed 
area and its surroundings.

MATERIALS AND METHODS

Study area

The object of this research is the Bila water-
shed, which is located in South Sulawesi, Indo-
nesia, within the administrative boundaries of the 
Sidenreng Rappang, Wajo, and Enrekang Regen-
cies. The area covers approximately 158,784 ha, 
on the basis of the results of the delineation of the 
watershed from the digital elevation model (DEM) 
by the author via GIS software (2024). Geograph-
ically, the research area is located 3°34’16.69”–
3°48’28.26” S and 120°03’23.33”–120°02’04.58” 
E (Google Earth, 2024). The topography of the 
area varies, ranging from lowlands to hills. Most 
of the area is dominated by the slope class 0–8% 
(flat category). The average annual rainfall in the 
region ranges from 1.800–3.000 mm a year.

Identification of drought using land surface 
temperature

The drought identification process was car-
ried out by downloading Landsat 8 OLI/TIRS im-
agery during the dry season from the 2019–2023, 
then performing radiometric and atmospheric 
corrections. Land surface temperature (LST) was 
calculated using Band 10 (Thermal Infrared Sen-
sor/TIRS) followed the Avdan and Jovanovska 
(2016) algorithm, resulting in an LST raster in de-
gree Celcius. The LST values were then classified 
according to Liviona et al. (2020), namely <20 °C 
(very low), 20–25 °C (low), 25–30 °C (medium), 
and 30–35 °C (high). Next, the LST classes were 
reclassified into two main gorup, namely the non-
drought category (classes <20 °C and 20–25 °C) 
and the drought category (classes 25–30 °C and 
30–35 °C). The classification raster was then con-
verted to shapefile format, and only areas includ-
ed in the drought category were extracted for each 
year of observation. All annual drought shapefiles 
from 2019–2023 were then overlaid gradually to 
produce a single layer depicting the spatial distri-
bution on drought events in the Bila Watershed 
during the study period.
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Collecting data on drought factors

Rainfall

Rainfall data was obtained from NASA/
POWER CERES/MERRA-2 satellites through 
the data access viewer page (accesed January 18, 
2025). Eight coordinates were selected to rep-
resent the spatial distribution of the Bila Water-
shed, and each was used as a point for download-
ing daily rainfall data. The daily data were then 
checked to ensure there were no missing values 
or anomalies, and then summed to obtain the 

annual rainfall at each station point. The annual 
rainfall values were integrated into GIS software 
and mapped using the Thiessen Polygon method 
to produce a spatial distribution of rainfall repre-
senting the area of influence of each station. The 
resulting polygons were converted into rasters 
and classified according to Riajaya et al. (2024) 
into four classes: 1.500–2.000 mm, 2.000–2.500 
mm, 2.500–3.000 mm, and >3.000 mm (Figure 
1). This classified rainfall raster was used as one 
of the factors in calculating the drought suscep-
tibility index.

Figure 1. Rainfall factor (source: NASA Power (CERES/MERRA-2))
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Land cover

Land cover data were generated through a vi-
sual interpretation of Landsat 8 OLI/TIRS imag-
ery. Prior to interpretation, the imagery was pre-
processed through radiometric and atmospheric 
correction, subsetting to the Bila Watershed 
boundaries, and reprojection to UTM WGS 84 
Zone 51S. The interpretation process was con-
ducted using on-screen digitizing in GIS software, 
in which land cover classes were delineated based 
on spectral characteristics, tone, texture, pattern, 
and contextual information. High-resolution 

basemaps from Google Earth were used to sup-
port the identification of land cover boundaries 
and improve the reliability of class labeling. Each 
digitized polygons was assigned a land cover 
category and subsequently underwent topology 
checks to ensure spatial consistency, eliminate 
gaps and overlaps, and correct sliver polygons. 
The resulting land cover map was produced at 
cartographic scale of 1:50,000 and subsequently 
converted into raster format (30 m resolution) for 
use as an input factor in the drought susceptibility 
index (Figure 2).

Figure 2. Land cover factor (source: Landsat 8 OLI/TIRS)
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Building density

Building density in the Bila Watershed was de-
rived from Landsat 8 OLI imagery using the Nor-
malized Difference Built-up Index (NDBI). The 
analysis began by downloading cloud-free Landsat 
8 imagery that had undergone radiometric and at-
mospheric correction. The surface reflectance val-
ues of Band 6 *SWIR1) and Band 5 (NIR) were 
then extracted, as these bands are required for 
NDBI computation. After preprocessing, the NDBI 
values were calculated in GIS software using the 
formula propsed by Zha et al. (2003), where:

	

1 

 

NDBI = (𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌1 − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌) 
(𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌1 + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌)  (1) 

 
NDVI = (𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌) 

(𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌)   (2) 
 

𝐹𝐹𝐹𝐹 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑛𝑛𝑛𝑛)/ ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑛𝑛𝑛𝑛)/ ∑ 𝑃𝑃𝑃𝑃𝑃𝑃   (3) 

 
DSI = Fr1 + Fr2 + .... + Frn (4) 

1.   

	 (1)

where:	 on Landsat 8: ρSWIR1 – Band 6 (shortwave 
infrared); ρNIR – Band 5 (near infrared).

The resulting NDBI raster was inspected to 
ensure that no errors were present, and was then 
classified into four density categories following 
commonly applied thresholds: -1 to 0 for non-
building areas, 0 to 0.1 for low building density, 
0.1 to 0.2 for moderate building density, and 0.2 
to 1 for high building density (Figure 3).

Figure 3. Building density factor (source: Landsat 8 OLI)
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Hotspot

Hotspot data were obtained from NOAA-20 
VIIRS imagery (375 m resolution) through the 
FIRMS platform (the https://firms.modaps.eos-
dis.nasa.gov, accessed December 11, 2024). All 
hotspot points within the Bila Watershed were ex-
tracted and imported into GIS software for further 
analysis. To examine the spatial concentration of 
fire occurrences, a Getis-Ord Gi* hotspot analy-
sis was performed, producing Z-score values 
that represent statistically significant clusters of 
high or low. The resulting Z-score layer was then 
interpolated using the inverse distance weight-
ing (IDW) method to generate a continuous 

raster surface depicting the intensity of fire ac-
tivity across the watershed. The interpolated Z-
score raster was subsequently classified into five 
hotspot values categories: <-1 (very low), -1 to 0 
(low), 0–1 (moderate), 1–2 (high), and >2 (very 
high) (Figure 4).

Density of vegetation 

Vegetation density was assessed using the nor-
malized difference vegetation index (NDVI) de-
rived from Landsat 8 OLI imagery. After prepro-
cessing the imagery, surface reflectance values for 
Band 5 (NIR) and Band 4 (Red) were extracted. 

Figure 4. Hotspot factor (source: NOAA-20 VIIRS)
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NDVI was calculated in GIS software following 
the standard formula (Shashikant et al., 2021):

	

1 

 

NDBI = (𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌1 − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌) 
(𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌1 + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌)  (1) 

 
NDVI = (𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌) 

(𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌)   (2) 
 

𝐹𝐹𝐹𝐹 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑛𝑛𝑛𝑛)/ ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑛𝑛𝑛𝑛)/ ∑ 𝑃𝑃𝑃𝑃𝑃𝑃   (3) 

 
DSI = Fr1 + Fr2 + .... + Frn (4) 

1.   

	 (2)

where:	ρNIR – Band 5 (near infrared) and ρRED 
– Band 4 (red).

The resulting NDVI raster was examined to 
ensure data quality and then classified accord-
ing to the thresholds recommended by Ahmed 
and Singh (2020), where NDVI values <0.125 
represent non-vegetated areas (water/open land), 
values between 0.125 and 0.25 indicate sparse 
vegetation, values between 0.25 and 0.5 indicate 

moderate vegetation, and values >0.5 represent 
dense vegetation (Figure 5). This classified NDVI 
raster provided a spatial representation of vegeta-
tion cover conditions in the watershed and was 
included as an input factor in the drought suscep-
tibility modeling.

Slope

Slope was obtained from the digital eleva-
tion model (DEM) and processed in GIS soft-
ware. The DEM was first preprocessed to ensure 
that its spatial extent and projection matched 
the boundary of the Bila Watershed. Using the 
slope analysis tool, the terrain slope for each 

Figure 5. Vegetation density factor (source: Landsat 8 OLI)
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pixel was computed and expressed as a percent-
age. The resulting slope raster was then classi-
fied following the criteria of Utama and Indriani 
(2021), which categorize slope into five classes: 
0–8% flat, 8–15% sloping, 15–25% moderately 
steep, 25–45% steep, and >45% very steep (Fig-
ure 6). This classified slope map provided a spa-
tial representation of terrain variability across 
the watershed and was incorporated as one of 

the physical conditioning factors in the drought 
susceptibility analysis.

River distance

The river distance factor was generated using 
river network data obtained from the Indonesian 
Topographic Map produced by the Geospatial 
Information of Agency. The river shapefile was 
first clipped to match the boundary of the Bila 

Figure 6. Slope factor (source: digital elevation model (DEM))
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Watershed to ensure spatial consistency. Using the 
Euclidean Distance tool in GIS software, a con-
tinuous raster surface was produced to represent 
the straight-line distance from each pixel to the 
nearest river channel. The resulting distance raster 
was then classified into four categories based on 
the criteria of Prasetyo et al. (2018), namely 0–100 
m, 100–250 m, 250–500 m, and >500 m (Figure 
7). These categories capture the spatial gradient of 
proximity to river systems, which may influence 

local water availability and contribute to drought 
susceptibility patterns across the watershed. 

Drought mapping via the frequency ratio

The frequency ratio (FR) method was applied 
to quantify the relationship between historical 
drought occurrences and the conditioning factors 
used in this study. This method is widely recog-
nized for its precision in vulnerability assessment 

Figure 7. River distance factor (source: Geospatial Information Agency)
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because it measures the likelihood of drought oc-
currence within each class of a causative factor 
compared to its overall spatial distribution (Lee et 
al., 2012). In this study, the FR modeling proce-
dure was carried out through the following steps:
1.	Preparation of drought occurrence data – the 

final drought map derived from LST analysis 
(2019–2023) was first converted from raster 
format to point data using the Raster to Point 
tool. Each point represents a location where 
drought was recorded. These points served as 
the event layer required for FR calculation.

2.	Extraction of causative factor values – each 
conditioning factor was converted to a classi-
fied raster. The values of all factors were then 
extracted to each drought occurrence point us-
ing the Extract Multivalue to Points function 
in GIS. This process generated a table indicat-
ing how many drought events occurred in each 
factor class.

3.	Calculation of pixel distribution for each factor 
class – for each conditioning factor, the total 
number of pixels in each class (PnxL) and the 
total number of pixels in the entire watershed 
(∑Pnx) were computed. This step quantifies 
the spatial proportion of ach factor class.

4.	FR calculation – the Fr value for each class 
was calculated using the formula (Soma and 
Kubota, 2017): 

	

1 

 

NDBI = (𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌1 − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌) 
(𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌1 + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌)  (1) 

 
NDVI = (𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 − 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌) 

(𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌)   (2) 
 

𝐹𝐹𝐹𝐹 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑛𝑛𝑛𝑛)/ ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑛𝑛𝑛𝑛)/ ∑ 𝑃𝑃𝑃𝑃𝑃𝑃   (3) 

 
DSI = Fr1 + Fr2 + .... + Frn (4) 

1.   

	 (3)

where:	PxcL – number of instances in the n class 
of parameter m (nm); Pixels – the number 
of pixels in the n class with the parameter 
m (nm); ΣPnxL – total pixel parameter m; 
ΣPnx – total pixel area.

Classes with FR>1 indicate a positive or 
strong correlation with drought occurrence, while 
FR<1 indicates a weak association.

Construction of FR raster layers

Each factor’s FR values were assigned back 
to their corresponding classes to produce FR-
based raster maps for all conditioning factors.

Development of the drought susceptibility index 
(DSI)

All FR rasters were combined using Raster 
Calculator tool in GIS software to produce the 
DSI:

	 DSI = FR1 + FR2 +.... + FRn	 (4)

where:	FR1, FR2, and FRn are the frequency ra-
tios for the factor.

This additive approach reflects the cumula-
tive influence of all drought-related factors.

Classification of DSI into susceptibility levels

The final DSI raster was classified into five 
drought susceptibility categories: very low, low, 
moderate, high, and very high using the Natural 
Break (Jenks) algorithm in GIS software.

Data validation

The statistical evaluation aimed to evaluate 
the predictive performance and reliability of the 
drought vulnerability models developed in this 
study. The main hypothesis is that the FR-based 
model is able to significantly differentiate between 
drought-prone and non-drought-prone areas.

Data on drought events for the 2019–2023 
period are compiled and combined into one layer 
of drought events. The data are then classified 
into two categories, drought (value = 1) and non-
drought (value = 0), and converted into a point 
shapefile (.shp). This dataset was randomly di-
vided into two subsets: 70% (388,208 points) 
were used for model training, and the remaining 
30% (157,803 points) were used for validation to 
evaluate the predictive performance of drought 
vulnerability models.

The next step involves extracting raster val-
ues through the Extract Value to Points function 
in GIS software. In this process, the drought event 
point shapefile is used as the servest as the point 
feature, while the vulnerability map in raster (.tif) 
format is used as the input raster. This operation 
generates a dataset containing raster values that 
correspond to each drought occurrence point.

The extracted data is then imported into the 
SPSS software (version 20) for analysis. Re-
ceiver operating characteristic (ROC) analysis is 
performed to evaluate the model’s performance. 
In this analysis, the raster value serves as the test 
variable, while the drought classification serves 
as the status variable. The area under the curve 
value (AUC) obtained from this analysis is used 
to assess the model’s accuracy in predicting 
drought-prone areas. Based on the classification 
standards from previous research (Balamurugan 
et al., 2017), the AUC values are interpreted as 
follows: excellent (0.9–1.0), excellent (0.8–0.9), 
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good (0.7–0.8), average (0.6–0.7), and poor (0.5–

0.6). To assess the statistical significance of AUC 

results, a z-test is applied to test the null hypoth-

esis (H0: AUC = 0.5). P-value < 0.05 indicates 

that the model performs significantly better than 

the random classification. In addition, the accu-

racy of the model is compared between training 

and validation datasets to test possible overfitting.

RESULTS AND DISCUSSION

Drought from the LST

The LST in 2019 reached 35 °C, followed by 
29 °C in 2020, 28 °C in 2021, and 32 °C in 2022 
and 2023 (Figure 8) on the basis of the analysis 
of Landsat 8 OLI/TIRS images. According to re-
cords for the 2015–2019 period, 2019 was one of 
the hottest years. This finding is supported by Yu-
niasih et al. (2023), who reported that Indonesia 
experienced an El Niño event in 2019, although 
it was weaker than it was from 2015–2016. These 
findings support the results of this study, suggest-
ing that the highest temperatures during the study 

Figure 8. LST in the Bila Watershed, south Sulawesi, Indonesia, between 2019 and 2023 (Landsat 8)
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period occurred in 2019, likely triggered by the 
El Niño phenomenon.

FR model

All values in Table 1 are not direct outputs 
from the spatial analysis process described in the 
method section. The number of drought event 
pixels in each pcator class (PxcL) was obtained 
through Extarct Multi-Value to Points, while the 

total number of pixels in each factor class (PnxL) 
was calculated using raster statistics. These two 
values were the used in Equation 3 to calculate 
the FR value. 

The results of the FR analysis showed that 
the occurrence of drought in the Bila watershed 
was mainly influenced by the density of build-
ings with moderate categories (FR = 2.98), land 
cover in the form of residential (FR = 2.89), 
and open area (FR = 2.80). This indicates that 

Table 1. FR values of drought-causing factors

Factor Factor Class Pixel dryness 
(PxcL) %PxcL Pixel class 

factor (PnxL) %PnxL FR

Rainfall
1.500–2.000 mm year-1 340.862 92.57 834.635 47.31 1.96

>3.000 mm year-1 27.346 7.43 929.631 52.69 0.14

Land cover

Water 3.005 0.82 26.617 1.51 0.54

Open area 246 0.07 421 0.02 2.80

Scrubs 11.675 3.17 222.912 12.63 0.25

Primary forest 11 0.00 412.016 23.35 0.00

Savannah/Grassland 5.300 1.44 11.959 0.68 2.12

Paddy field 175.182 47.58 395.434 22.41 2.12

Secondary forest 55 0.01 79.269 4.49 0.00

Dryland agriculture 130.003 35.31 499.113 28.29 1.25

Residential 35.330 9.60 58.516 3.32 2.89

Mixed dryland area 6.699 1.82 56.349 3.19 0.57

Swamp scrubs 442 0.12 1.172 0.07 1.81

Plantations 260 0.07 488 0.03 2.55

Building 
density

Nonbuilding (-1–0) 284.996 77.40 1.621.962 91.93 0.84

Low (0–0.1) 40.635 11.04 70.893 4.02 2.75

Moderate (0.1–0.2) 35.524 9.65 57.142 3.24 2.98

High (0.2–1) 7.053 1.92 14.269 0.81 2.37

Hotspot area

Very low (<-1) 186.803 50.73 793.231 44.96 1.13

Low (-1–0) 131.393 35.68 721.658 40.90 0.87

Moderate (0–1) 20.587 5.59 84.642 4.80 1.17

High (1–2) 13.664 3.71 84.597 4.80 0.77

Very high (>2) 15.761 4.28 80.138 4.54 0.94

Vegetation 
density

Non-vegetated (<0.125) 22.708 6.17 222.851 12.63 0.49

Sparse (0.125 – 0.25) 16.841 4.57 139.457 7.90 0.58

Moderate (0.25–0.5) 70.277 19.09 220.297 12.49 1.53

Dense (>0.5) 258.382 70.17 1.181.661 66.98 1.05

Slope

Flat slope (0–8%) 229.859 62.43 556.588 31.55 1.98

Sloping (8–15%) 84.570 22.97 250.926 14.22 1.61
Moderately steep
(15–25%) 34.969 9.50 201.337 11.41 0.83

Steep slope (25–45%) 13.972 3.79 330.762 18.75 0.20

Very steep slope (>45%) 4.838 1.31 424.653 24.07 0.05

River distance

<500 m 118.935 32.30 495.623 28.09 1.15

500–2500 m 216.774 58.87 1.078.270 61.12 0.96

>2500 m 32.499 8.83 190.373 10.79 0.82



388

Ecological Engineering & Environmental Technology 2025, 26(12), 376–392

built-up areas such as high-density residential 
are more sensitive to drought due to the imper-
meable nature of the surface (waterproof) caus-
ing low infiltration. In addition, the built-up area 
has a large heat absorption capacity, reflected in 
the high surface temperature value so as to accel-
erate the evaporation process. On the other hand, 
densely populated areas increase the pressure on 
household water needs, contributing to the water 
deficit, especially in the dry season. Meanwhile, 
open areas without vegetation on it also have a 
low water absorption capacity so that the avail-
ability of groundwater is limited. These findings 
are in line with the results of research by Alade-
momi et al. (2022) and Vinh et al. (2020), who 
reported that an increase in NDBI values, an in-
dicator of the expansion of built areas, includ-
ing housing, contributes to increasing soil sur-
face temperatures, thereby increasing the risk of 
drought. In addition, open regions also contrib-
ute to worsening drought conditions. The lack of 
vegetation cover in these areas leads to relative-
ly high evaporation rates. Research by Sarminah 
et al. (2019) reported that the evaporation rate 
in open regions reached 80% on the basis of the 
water balance approach using lysimeters.

Drought vulnerability

The values in Table 2 are derived from 
drought susceptibility index (DSI) raster generat-
ed from the sum all FR rasters. Classification was 
the performed using the Natural Breaks (Jenks) 
method in GIS software, and the number of pixels 
and area of each class were obtained automati-
cally through raster statistics.

On the basis of the DSI results derived from 
the FR values, the drought vulnerability map 
(Figure 9) reveals that area with moderate to 
very high vulnerability is concentrated in the 
downstream region. In contrast, the upstream 

areas are mostly included in the low to very low 
vulnerability class.

High vulnerability in the downstream part of a 
watershed is associated mainly with types of land 
cover, such as rice farming and dryland farming. 
The findings of this study are supported by previ-
ous research. For example, Wicitra et al. (2023) 
examined the dynamics of soil surface tempera-
ture during the 2020–2023 drought in Kedung-
banteng village, Tegal. They reported that high 
surface temperatures, an indication of drought, 
were concentrated in residential agricultural areas 
and drylands. Similarly, Hu et al. (2020) reported 
that the highest average surface temperature oc-
curred in built-up areas (28.6 °C), followed by 
vacant land (26.0 °C) and dryland agriculture 
(25.8 °C). Although most of the downstream re-
gions of the Bila watershed have high vegetation 
cover, this vegetation is dominated by crops, such 
as rice, which are highly dependent on rainfall 
and surface water availability, especially in rain-
fed farming systems. Thus, these areas remain 
vulnerable to drought.

In addition to agricultural areas, therapeutic 
areas also show high drought susceptibility. This 
is related to the increased water demand associ-
ated with higher building densities, especially in 
housing. Wada et al. (2013) emphasized that in-
creased human water consumption significantly 
contributes to drought risk.

Data validation

The ROC validation performed by compar-
ing DSI raster values at drought and non-srought 
points for both the training (70%) and validation 
(30%) datasets. The resulting ROC curves are 
shown in Figure 10, and the corresponding AUC 
values automatically generated from the SPSS 
ROC analysis are presented in Table 3.

Table 2. Drought vulnerability class based on DSI values in the Bila watershed

DSI Vulnerability categories Number of pixels
Area

(ha) (%)

3.11–4.88 Very low 620,463 56,436.44 35.54

4.88–6.92 Low 289,864 25,636.48 16.15

6.92–9.05 Moderate 313,681 28,183.99 17.75

9.05–11.01 High 432,380 38,944.97 24.53

11.01–13.62 Very high 107,878 9,582.16 6.03

Total 1,764,266 158,784.04 100.00
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Figure 9. Drought vulnerability map based on DSI classification

Figure 10. The AUC curve of the ROC validation results against FR for drought vulnerability modeling. (a) 
Success rate of the model. (b) Prediction rate of the model
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Table 3. AUC values from the ROC validation results 
for the success rates and prediction rates of the FR 
models for drought susceptibility

AUC AUC value

Model success rate 0.817

Model prediction rate 0.775

Based on the AUC classification proposed 
by Balamurugan et al. (2017), the training data-
set yielded an AUC value of 0.817, which shows 
excellent performance in recognizing the spatial 
patterns of historical drought events in the Bila 
watershed. This means that when evaluated with 
historical data, the model can identify drought-
prone areas with increasing accuracy. Meanwhile, 
the validation dataset achieved an AUC value of 
0.775, which indicates good predictive ability. This 
shows that when tested with independent (invisi-
ble) data, the model remains able to distinguish be-
tween drought and non-drought areas effectively.

The test of statistical significance of AUC 
values showed p < 0.05, which confirms that the 
model’s predictive ability is significantly better 
than that of random classification (H₀: AUC = 
0.5 is rejected). A small difference between the 
AUC values of training and validation (ΔAUC = 
0.042) indicates that the model is stable and not 
overfitted, with good generalization capability for 
the Bila watershed region. Overall, these results 
suggest that the FR-based drought vulnerability 
model developed in this study provides reliable 
and reproducible predictions, and can serve as a 
valuable tool for spatial drought risk assessment 
and early warning planning in the region.

CONCLUSIONS

High surface temperatures have resulted in 
drought in the Bila watershed for more than five 
years. The affected areas are characterized by 
low rainfall, moderate building density, mod-
erate vegetation density, and land cover types 
such as residential, paddy fields, plantations, 
and open areas, each of which has a high FR 
value. Drought-prone zone mapping revealed 
that areas with moderate to very high drought 
vulnerability are concentrated in the middle to 
downstream regions. In contrast, the low and 
very low drought vulnerability classes are con-
centrated on upstream areas. On the basis of the 

vulnerability class in the Bila watershed, spatial-
ly differentiated adaptive mitigation strategies 
are recommended. The upstream-central zone 
focuses on vegetative measures such as refores-
tation, agroforestry, and afforestation to improve 
water infiltration and hydrological stability. In 
downstream zones, civil infrastructure, includ-
ing infiltration wells, biopores, retention ponds, 
and drainage systems, should be prioritized and 
combined with mixed agroforestry to improve 
water uptake and reduce surface runoff. Densely 
populated areas encourage the development of 
green open spaces to lower local temperatures, 
increase rainwater infiltration, and increase local 
climate resilience.

Acknowledgments

The author would like to express his deep-
est gratitude to all the parties who supported this 
research.

REFERENCE

1.	 Addis, A. (2023). GIS-based landslide susceptibility 
mapping using frequency ratio and shannon entro-
py models in Dejen District, Northwestern Ethio-
pia. Journal of Engineering, 2023. https://doi.org/
https://doi.org/10.1155/2023/1062388 

2.	 Ahmed, T., Singh, D. (2020). Probability den-
sity functions based classification of MODIS 
NDVI time series data and monitoring of veg-
etation growth cycle. Advances in Space Re-
search, 66(4), 873–886. https://doi.org/10.1016/j.
asr.2020.05.004 

3.	 Alademomi, A. S., Okolie, C. J., Daramola, O. E., 
Akinnusi, S. A., Adediran, E., Olanrewaju, H. O., 
Alabi, A. O., Salami, T. J., Odumosu, J. (2022). The 
interrelationship between LST, NDVI, NDBI, and 
land cover change in a section of Lagos metropo-
lis, Nigeria. Applied Geomatics, 14(2), 299–314. 
https://doi.org/10.1007/s12518-022-00434-2 

4.	 Alonzo, C. A., Galabay, J. M., Macatangay, M. N., 
Magpayo, M. B., Ramirez, R. (2023). Drought risk 
assessment and monitoring of Ilocos Norte Prov-
ince in the Philippines using satellite remote sens-
ing and meteorological data. AgriEngineering, 5, 
720–739. https://doi.org/https://doi.org/10.3390/
agriengineering5020045 

5.	 Amalo, L. F., Hidayat, R., Sulma, S. (2018). Analy-
sis of agricultural drought in East Java using vegeta-
tion health index. Agrivita, 40(1), 63–73. https://doi.
org/10.17503/agrivita.v40i1.1080 



391

Ecological Engineering & Environmental Technology 2025, 26(12), 376–392

6.	 Avdan, U., Jovanovska, G. (2016). Algorithm for 
automated mapping of land surface temperature us-
ing LANDSAT 8 Satellite data. Journal of Sensors. 
https://doi.org/10.1155/2016/1480307 

7.	 Balamurugan, G., Seshan, K., Bera, S. (2017). 
Frequency ratio model for groundwater potential 
mapping and its sustainable management in cold 
desert, India. Journal of King Saud University - 
Science, 29(3), 333–347. https://doi.org/10.1016/j.
jksus.2016.08.003 

8.	 Cahyono, C., Juliastuti, Setyandito, O. (2024). 
Flood Analysis on Lake Tempe, South Su-
lawesi. IOP Conference Series: Earth and En-
vironmental Science, 1343(1), 1–8. https://doi.
org/10.1088/1755-1315/1343/1/012019 

9.	 Cantarino, I., Carrion, M. A., Martínez-Ibáñez, V., 
Gielen, E. (2023). Improving landslide susceptibil-
ity assessment through frequency ratio and classi-
fication methods—case study of Valencia Region 
(Spain). Apllied Science, 13. https://doi.org/https://
doi.org/10.3390/app13085146 

10.	Chuphal, D. S., Kushwaha, A. P., Aadhar, S., Mishra, 
V. (2024). Drought Atlas of India, 1901–2020. Sci-
entific Data, 11(1), 1–12. https://doi.org/10.1038/
s41597-023-02856-y 

11.	Cunha, A. P. M. A., Zeri, M., Leal, K. D., Costa, 
L., Cuartas, L. A., Marengo, J. A., Tomasella, J., 
Vieira, R. M., Barbosa, A. A., Cunningham, C., 
Cal Garcia, J. V., Broedel, E., Alvalá, R., Ribeiro-
Neto, G. (2019). Extreme drought events over Brazil 
from 2011 to 2019. Atmosphere, 10(642). https://
doi.org/10.3390/atmos10110642 

12.	Garg, V., Nikam, B. R., Thakur, P. K., Aggarwal, 
S. P., Gupta, P. K., Srivastav, S. K. (2019). Human-
induced land use land cover change and its impact 
on hydrology. HydroResearch, 1, 48–56. https://doi.
org/10.1016/j.hydres.2019.06.001 

13.	Hasan, H. H., Razali, S. F. M., Muhammad, N. S., 
Ahmad, A. (2021). Hydrological drought across 
Peninsular Malaysia: Implication of drought in-
dex. Natural Hazards and Earth System Sciences, 
June, 1–28.

14.	Hu, M., Wang, Y., Xia, B., Huang, G. (2020). Sur-
face Temperature variations and their relationships 
with land cover in the Pearl River Delta. Environ-
mental Science and Pollution Research, 27(30). 
https://doi.org/10.1007/s11356-020-09768-z 

15.	Islam, F., Ahmad, M. N., Janjuhah, H. T., Ullah, M., 
Islam, I. U., Kontakiotis, G., Skilodimou, H. D., 
Bathrellos, G. D. (2022). Modelling and mapping of 
soil erosion susceptibility of Murree, Sub-Himalayas 
using GIS and RS-based models Fakhrul. Appllied 
Science. https://doi.org/10.3390/app122312211 

16.	Lee, M., Kang, J., Jeon, S. (2012). Application of 
frequency ratio model and validation for predictive 
flooded area and susceptibility mapping using GIS. 

IGARSS, 1, 895–898.
17.	Liviona, C. D. A., Saraswati, R., Wibowo, A. (2020). 

The Effect of NDVI and NDBI on Land Surface 
Temperature in Cirebon City 2015 and 2019. E3S 
Web of Conferences, 202. https://doi.org/10.1051/
e3sconf/202020213006 

18.	Nursaputra, M., Pahar, S. P., and Chairil, A. (2021). 
Identification of drought level using normalized 
difference latent heat index in the south coast of 
South Sulawesi Province identification of drought 
level using normalized difference latent heat index 
in the South Coast of South Sulawesi Province. 
Earth and Environmental Science, 807. https://doi.
org/10.1088/1755-1315/807/2/022032 

19.	Prasetyo, D. A., Suprayogi, A., and Hani’ah. (2018). 
Analysis of Drought-prone Locations Using Geo-
graphic Information Systems in Blora Regency in 
2017. Journal of Undip Geodesy, 7(4), 314–324.

20.	Rahmat, S., Soma, A. S., Barkey, R. A. (2023). 
Land Cover Changes in Bila Watershed, South Su-
lawesi, Indonesia. IOP Conference Series: Earth 
and Environmental Science, 1230(1). https://doi.
org/10.1088/1755-1315/1230/1/012045 

21.	Rahmati, O., Pourghasemi, H. R., Zeinivand, H. 
(2015). Flood susceptibility mapping using fre-
quency ratio and weights-of-evidence models in 
the Golastan Province, Iran. Geocarto Interna-
tional, 37–41. https://doi.org/10.1080/10106049.
2015.1041559 

22.	Riajaya, P. D., Kadarwati, F. T., Hariyono, B., 
Subiyakto, Cholid, M. (2024). The Distribution of 
Rainfall in Areas Suitable for Sugarcane Farming in 
Blitar Regency, East Java. IOP Conference Series: 
Earth and Environmental Science, 1377(1). https://
doi.org/10.1088/1755-1315/1377/1/012012 

23.	Sarminah, S., Pasaribu, M., Aipassa, M. I. (2019). 
Estimation of evapotranspiration at agroforestri land 
and open area in educational forest of forestry fac-
ulty Unmul. Agrifor, 18(2), 325–338.

24.	Senjani, M., Kusratmoko, E., Ristya, Y. (2020). Spa-
tial Distribution of Drought Levels in Bantimurung 
District, Maros Regency, South Sulawesi Province. 
E3S Web of Conferences, 153. https://doi.org/https://
doi.org/10.1051/e3sconf /202015302008 

25.	Shashikant, V., Shariff, A. R. M., Wayayok, A., Ka-
mal, R., Lee, Y. P., Takeuchi, W. (2021). Utilizing 
TVDI and NDWI to Classify Severity of Agricul-
tural Drought in Chuping, Malaysia. Agronomy, 
11(6). https://doi.org/10.3390/agronomy11061243 

26.	Soma, A., Kubota, T. (2017). The performance 
of land use change causative factor on landslide 
susceptibility map in upper Ujung-Loe Wa-
tersheds South Sulawesi, Indonesia. Geoplan-
ning, 4(2), 157–170. https://doi.org/10.14710/
geoplanning.4.2.157-170



392

Ecological Engineering & Environmental Technology 2025, 26(12), 376–392

27.	Thomas, V., Albert, J. R. G., Hepburn, C. (2014). 
Contributors to the frequency of intense climate di-
sasters in Asia-Pacific countries. Climatic Change, 
126(3–4), 381–398. https://doi.org/10.1007/
s10584-014-1232-y

28.	Utama, W., Indriani, R. F. (2021). Regional Phys-
iographic Study for the Hydrology of Kali Lamong 
Watershed Area. IOP Conference Series: Earth 
and Environmental Science, 936(1). https://doi.
org/10.1088/1755-1315/936/1/012032

29.	Vinh, N. Q., Khanh, N. T., Anh, P. T. (2020). 
The Inter-relationships Between LST, NDVI, 
NDBI in remote sensing to achieve drought re-
silience in Ninh Thuan, Vietnam. Lecture Notes 
in Civil Engineering, 80, 201–209. https://doi.

org/10.1007/978-981-15-5144-4_15 
30.	Wada, Y., Van Beek, L. P. H., Wanders, N., 

Bierkens, M. F. P. (2013). Human water consump-
tion intensifies hydrological drought worldwide. 
Environmental Research Letters, 8(3). https://doi.
org/10.1088/1748-9326/8/3/034036 

31.	Wang, Y., Fang, Z., Hong, H., Costache, R., Tang, 
X. (2021). Flood susceptibility mapping by inte-
grating frequency ratio and index of entropy with 
multilayer perceptron and classification and re-
gression tree. Journal of Environmental Manage-
ment, 289. https://doi.org/https://doi.org/10.1016/j.
jenvman.2021.112449

32.	Wicitra, A. P., Hersugondo, H., Kepirianto, C., 


