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ABSTRACT

Despite substantial land cover changes and a history of recurrent droughts, the Bila watershed has not been sub-
jected to comprehensive spatial drought vulnerability. This study overcomes this research gap by integrating a
geographic information system (GIS) with the frequency ratio (FR) method to produce an accurate and scientifi-
cally based map of drought-prone zones. To the best of the authors’ knowledge, this study is the first to apply the
FR method to assess drought vulnerability at the watershed scale in South Sulawesi, thus contributing a new and
data-driven framework to advance spatial drought analysis in the tropical environments. The FR analysis used seven
drought-related factors: rainfall, land cover, building density, hotspots, vegetation density, slope, and river distance.
The results of the LST analysis revealed that approximately 43.25% of the area in the Bila watershed experienced
drought, primarily due to moderate building density and residential land cover, as indicated by high FR values of
2.98 and 2.89, respectively. The results of mapping the Bila watershed’s drought-prone zones show that areas with
high to very high drought vulnerability categories tend to be concentrated in paddy fields, residential areas, dryland
agriculture, and areas with moderate building density. The spatial distribution pattern reveals that the downstream
areas of the Bila watershed exhibit a greater level of drought vulnerability than the upstream regions do.

Keywords: drought vulnerability, Bila watershed, remote sensing, geographic information systems, land surface

temperature, frequency ratio.

INTRODUCTION

The Intergovernmental Panel on Climate
Change (IPCC) in 2023 predicts that the global
temperature increase will reach or exceed 1.5 °C
or 2.7 °F between 2021 and 2040. According to
Thomas et al. (2014), tropical countries, includ-
ing Indonesia, are vulnerable to hydrometeoro-
logical disasters, such as droughts triggered by
climate change. The phenomenon of drought in
tropical regions not only threatens food security,
but also has direct implications for the availabili-
ty of water, land degradation, and socio-economic
stability of the community.

Research on drought has been conducted in
several tropical countries, including the Phil-
ippines, especially in the llocos Norte region
(Alonzo et al., 2023), India (Chuphal et al., 2024),
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Malaysia (Hasan et al., 2021), Brazil (Cunhaetaal.,
2019), and Indonesia (Amalo et al., 2018; Nursa-
putra et al., 2021). However, most of these stud-
ies focused on a national or regional scale without
detailed spatial mapping at the watershed level. In
fact, watersheds are an ideal hydrological unit for
understanding the interaction between biophysical
factors and human activity on drought dynamics.
The Bila watershed is one of the watersheds
in South Sulawesi that administratively crosses
Sidrap, Wajo, and Enrekang Regencies. Research
by Rahmat et al. (2023) indicated that the Bila
watershed has experienced significant changes in
land cover, with approximately 915.96 hectares
of secondary forest converted to agricultural land.
A 0.7% decrease in forest cover could substan-
tially reduce water availability and increase sur-
face runoff by up to 45% (Garg et al., 2019). The


https://orcid.org/0009-0007-9484-7227
https://orcid.org/0000-0001-8005-7020
https://orcid.org/0000-0002-7277-6129

Ecological Engineering & Environmental Technology 2025, 26(12), 376-392

increased runoff contributes to sedimentation in
Lake Tempe, which serves as the main reservoir
for flows from the Bila watershed, thereby reduc-
ing water tamping capacity and increasing the risk
of drought and flooding. According to Cahyono et
al. (2024), the annual sediment thickness in Lake
Tempe ranges from 20-40 cm.

Historical data on drought events in South
Sulawesi from the National Disaster Manage-
ment Agency (BNPB) show that from 2000-
2023, 169 drought events occurred. The Central
Statistics Agency noted that the 2023 drought af-
fected and displaced 211,086 people, with 11,582
of them residing in the Wajo and Sidrap Regen-
cies. However, there has not been a comprehen-
sive spatial study of drought-prone zones in the
Bila watershed. This information is important to
support mitigation and early warning strategies,
considering that this region plays a strategic role
in providing water for Lake Tempe and the sur-
rounding area.

Previous research in South Sulawesi, Indo-
nesia generally used drought indices (Nursapu-
tra et al., 2021; Senjani et al., 2020), but has not
integrated spatial statistical approaches to quan-
titatively assess vulnerability. In addition, most
studies focus only on drought intensity, without
considering biophysical and land use factors that
contribute to the region’s vulnerability to drought.
This gap demonstrates the need for more objec-
tive and probabilistic-based mapping methods to
assess drought vulnerability spatially.

The frequency ratio (FR) method is known
to have a high level of precision in disaster vul-
nerability assessment based on spatial data (Lee
et al., 2012). The FR method has been widely
used in landslide vulnerability mapping (Addis,
2023; Cantarino et al., 2023), flood hazard anal-
ysis (Rahmati et al., 2015; Wang et al., 2021),
and soil erosion studies (Islam et al., 2022), but
its application in drought vulnerability mapping
is still very limited. Therefore, this study seeks
to bridge this gap by applying the FR method to
identify the factors that have the most influence
on drought vulnerability in the Bila watershed.
Specifically, this study aims to identify the main
factors contributing to drought in the Bila Water-
shed and applying the FR method in spatial map-
ping of drought susceptibility.

The novelty of this study lies in the appli-
cation of the FR method in mapping drought
vulnerability at the watershed level, which has
not been widely done in the tropical context of

Indonesia. The results of this research are ex-
pected to strengthen the scientific basis in the de-
velopment of early warning systems and climate
change adaptation strategies in the Bila watershed
area and its surroundings.

MATERIALS AND METHODS

Study area

The object of this research is the Bila water-
shed, which is located in South Sulawesi, Indo-
nesia, within the administrative boundaries of the
Sidenreng Rappang, Wajo, and Enrekang Regen-
cies. The area covers approximately 158,784 ha,
on the basis of the results of the delineation of the
watershed from the digital elevation model (DEM)
by the author via GIS software (2024). Geograph-
ically, the research area is located 3°34’16.69”"—
3°48°28.26” S and 120°03’23.33”-120°02°04.58”
E (Google Earth, 2024). The topography of the
area varies, ranging from lowlands to hills. Most
of the area is dominated by the slope class 0-8%
(flat category). The average annual rainfall in the
region ranges from 1.800-3.000 mm a year.

Identification of drought using land surface
temperature

The drought identification process was car-
ried out by downloading Landsat 8 OLI/TIRS im-
agery during the dry season from the 2019-2023,
then performing radiometric and atmospheric
corrections. Land surface temperature (LST) was
calculated using Band 10 (Thermal Infrared Sen-
sor/TIRS) followed the Avdan and Jovanovska
(2016) algorithm, resulting in an LST raster in de-
gree Celcius. The LST values were then classified
according to Liviona et al. (2020), namely <20 °C
(very low), 20-25 °C (low), 25-30 °C (medium),
and 30-35 °C (high). Next, the LST classes were
reclassified into two main gorup, namely the non-
drought category (classes <20 °C and 20-25 °C)
and the drought category (classes 25-30 °C and
30-35 °C). The classification raster was then con-
verted to shapefile format, and only areas includ-
ed in the drought category were extracted for each
year of observation. All annual drought shapefiles
from 2019-2023 were then overlaid gradually to
produce a single layer depicting the spatial distri-
bution on drought events in the Bila Watershed
during the study period.
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Collecting data on drought factors

Rainfall

Rainfall data was obtained from NASA/
POWER CERES/MERRA-2 satellites through
the data access viewer page (accesed January 18,
2025). Eight coordinates were selected to rep-
resent the spatial distribution of the Bila Water-
shed, and each was used as a point for download-
ing daily rainfall data. The daily data were then
checked to ensure there were no missing values
or anomalies, and then summed to obtain the

annual rainfall at each station point. The annual
rainfall values were integrated into GIS software
and mapped using the Thiessen Polygon method
to produce a spatial distribution of rainfall repre-
senting the area of influence of each station. The
resulting polygons were converted into rasters
and classified according to Riajaya et al. (2024)
into four classes: 1.500-2.000 mm, 2.000-2.500
mm, 2.500-3.000 mm, and >3.000 mm (Figure
1). This classified rainfall raster was used as one
of the factors in calculating the drought suscep-
tibility index.
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Figure 1. Rainfall factor (source: NASA Power (CERES/MERRA-2))
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Land cover

Land cover data were generated through a vi-
sual interpretation of Landsat 8 OLI/TIRS imag-
ery. Prior to interpretation, the imagery was pre-
processed through radiometric and atmospheric
correction, subsetting to the Bila Watershed
boundaries, and reprojection to UTM WGS 84
Zone 51S. The interpretation process was con-
ducted using on-screen digitizing in GIS software,
in which land cover classes were delineated based
on spectral characteristics, tone, texture, pattern,
and contextual information. High-resolution

basemaps from Google Earth were used to sup-
port the identification of land cover boundaries
and improve the reliability of class labeling. Each
digitized polygons was assigned a land cover
category and subsequently underwent topology
checks to ensure spatial consistency, eliminate
gaps and overlaps, and correct sliver polygons.
The resulting land cover map was produced at
cartographic scale of 1:50,000 and subsequently
converted into raster format (30 m resolution) for
use as an input factor in the drought susceptibility
index (Figure 2).
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Figure 2. Land cover factor (source: Landsat 8 OLI/TIRS)
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Building density

Building density in the Bila Watershed was de-
rived from Landsat 8 OLI imagery using the Nor-
malized Difference Built-up Index (NDBI). The
analysis began by downloading cloud-free Landsat
8 imagery that had undergone radiometric and at-
mospheric correction. The surface reflectance val-
ues of Band 6 *SWIR1) and Band 5 (NIR) were
then extracted, as these bands are required for
NDBI computation. After preprocessing, the NDBI
values were calculated in GIS software using the
formula propsed by Zha et al. (2003), where:

NDBI = (PSWIR1 - pNIR)
(PSWIR1 + pNIR)

@)

where: on Landsat 8: pSWIR1 — Band 6 (shortwave
infrared); pNIR — Band 5 (near infrared).

The resulting NDBI raster was inspected to
ensure that no errors were present, and was then
classified into four density categories following
commonly applied thresholds: -1 to 0 for non-
building areas, 0 to 0.1 for low building density,
0.1 to 0.2 for moderate building density, and 0.2
to 1 for high building density (Figure 3).
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Hotspot

Hotspot data were obtained from NOAA-20
VIIRS imagery (375 m resolution) through the
FIRMS platform (the https://firms.modaps.eos-
dis.nasa.gov, accessed December 11, 2024). All
hotspot points within the Bila Watershed were ex-
tracted and imported into GIS software for further
analysis. To examine the spatial concentration of
fire occurrences, a Getis-Ord Gi* hotspot analy-
sis was performed, producing Z-score values
that represent statistically significant clusters of
high or low. The resulting Z-score layer was then
interpolated using the inverse distance weight-
ing (IDW) method to generate a continuous

raster surface depicting the intensity of fire ac-
tivity across the watershed. The interpolated Z-
score raster was subsequently classified into five
hotspot values categories: <-1 (very low), -1t0 0
(low), 0-1 (moderate), 1-2 (high), and >2 (very
high) (Figure 4).

Density of vegetation

Vegetation density was assessed using the nor-
malized difference vegetation index (NDVI) de-
rived from Landsat 8 OLI imagery. After prepro-
cessing the imagery, surface reflectance values for
Band 5 (NIR) and Band 4 (Red) were extracted.
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NDVI was calculated in GIS software following
the standard formula (Shashikant et al., 2021):

(pNIR — pRed)

NDVI = (pNIR + pRed) (2)

where: pNIR — Band 5 (near infrared) and pRED
— Band 4 (red).

The resulting NDVI raster was examined to
ensure data quality and then classified accord-
ing to the thresholds recommended by Ahmed
and Singh (2020), where NDVI values <0.125
represent non-vegetated areas (water/open land),
values between 0.125 and 0.25 indicate sparse
vegetation, values between 0.25 and 0.5 indicate

moderate vegetation, and values >0.5 represent
dense vegetation (Figure 5). This classified NDVI
raster provided a spatial representation of vegeta-
tion cover conditions in the watershed and was
included as an input factor in the drought suscep-
tibility modeling.

Slope

Slope was obtained from the digital eleva-
tion model (DEM) and processed in GIS soft-
ware. The DEM was first preprocessed to ensure
that its spatial extent and projection matched
the boundary of the Bila Watershed. Using the
slope analysis tool, the terrain slope for each
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pixel was computed and expressed as a percent-
age. The resulting slope raster was then classi-
fied following the criteria of Utama and Indriani
(2021), which categorize slope into five classes:
0-8% flat, 8—15% sloping, 15-25% moderately
steep, 25-45% steep, and >45% very steep (Fig-
ure 6). This classified slope map provided a spa-
tial representation of terrain variability across
the watershed and was incorporated as one of

the physical conditioning factors in the drought
susceptibility analysis.

River distance

The river distance factor was generated using
river network data obtained from the Indonesian
Topographic Map produced by the Geospatial
Information of Agency. The river shapefile was
first clipped to match the boundary of the Bila
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Watershed to ensure spatial consistency. Using the
Euclidean Distance tool in GIS software, a con-
tinuous raster surface was produced to represent
the straight-line distance from each pixel to the
nearest river channel. The resulting distance raster
was then classified into four categories based on
the criteria of Prasetyo et al. (2018), namely 0-100
m, 100-250 m, 250-500 m, and >500 m (Figure
7). These categories capture the spatial gradient of
proximity to river systems, which may influence

local water availability and contribute to drought
susceptibility patterns across the watershed.

Drought mapping via the frequency ratio

The frequency ratio (FR) method was applied
to quantify the relationship between historical
drought occurrences and the conditioning factors
used in this study. This method is widely recog-
nized for its precision in vulnerability assessment
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because it measures the likelihood of drought oc-

currence within each class of a causative factor

compared to its overall spatial distribution (Lee et
al., 2012). In this study, the FR modeling proce-
dure was carried out through the following steps:

1. Preparation of drought occurrence data — the
final drought map derived from LST analysis
(2019-2023) was first converted from raster
format to point data using the Raster to Point
tool. Each point represents a location where
drought was recorded. These points served as
the event layer required for FR calculation.

2. Extraction of causative factor values — each
conditioning factor was converted to a classi-
fied raster. The values of all factors were then
extracted to each drought occurrence point us-
ing the Extract Multivalue to Points function
in GIS. This process generated a table indicat-
ing how many drought events occurred in each
factor class.

3. Calculation of pixel distribution for each factor
class — for each conditioning factor, the total
number of pixels in each class (PnxL) and the
total number of pixels in the entire watershed
(3> Pnx) were computed. This step quantifies
the spatial proportion of ach factor class.

4. FR calculation — the Fr value for each class
was calculated using the formula (Soma and
Kubota, 2017):

PxcL (nm)/ Y, PnxL

FR = Pixel (nm)/ Y Pnx (3)

where: PxcL — number of instances in the n class
of parameter m (nm); Pixels — the number
of pixels in the n class with the parameter
m (nm); ZPnxL — total pixel parameter m;
2Pnx — total pixel area.

Classes with FR>1 indicate a positive or
strong correlation with drought occurrence, while
FR<1 indicates a weak association.

Construction of FR raster layers

Each factor’s FR values were assigned back
to their corresponding classes to produce FR-
based raster maps for all conditioning factors.

Development of the drought susceptibility index
(DSI)

All FR rasters were combined using Raster
Calculator tool in GIS software to produce the
DSl:

DSI = FR1 + FR2 +.... + FRn ()

where: FR1, FR2, and FRn are the frequency ra-
tios for the factor.

This additive approach reflects the cumula-
tive influence of all drought-related factors.

Classification of DS into susceptibility levels

The final DSI raster was classified into five
drought susceptibility categories: very low, low,
moderate, high, and very high using the Natural
Break (Jenks) algorithm in GIS software.

Data validation

The statistical evaluation aimed to evaluate
the predictive performance and reliability of the
drought vulnerability models developed in this
study. The main hypothesis is that the FR-based
model is able to significantly differentiate between
drought-prone and non-drought-prone areas.

Data on drought events for the 2019-2023
period are compiled and combined into one layer
of drought events. The data are then classified
into two categories, drought (value = 1) and non-
drought (value = 0), and converted into a point
shapefile (.shp). This dataset was randomly di-
vided into two subsets: 70% (388,208 points)
were used for model training, and the remaining
30% (157,803 points) were used for validation to
evaluate the predictive performance of drought
vulnerability models.

The next step involves extracting raster val-
ues through the Extract Value to Points function
in GIS software. In this process, the drought event
point shapefile is used as the servest as the point
feature, while the vulnerability map in raster (.tif)
format is used as the input raster. This operation
generates a dataset containing raster values that
correspond to each drought occurrence point.

The extracted data is then imported into the
SPSS software (version 20) for analysis. Re-
ceiver operating characteristic (ROC) analysis is
performed to evaluate the model’s performance.
In this analysis, the raster value serves as the test
variable, while the drought classification serves
as the status variable. The area under the curve
value (AUC) obtained from this analysis is used
to assess the model’s accuracy in predicting
drought-prone areas. Based on the classification
standards from previous research (Balamurugan
et al., 2017), the AUC values are interpreted as
follows: excellent (0.9-1.0), excellent (0.8-0.9),
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good (0.7-0.8), average (0.6-0.7), and poor (0.5~
0.6). To assess the statistical significance of AUC
results, a z-test is applied to test the null hypoth-
esis (HO: AUC = 0.5). P-value < 0.05 indicates
that the model performs significantly better than
the random classification. In addition, the accu-
racy of the model is compared between training

and validation datasets to test possible overfitting.

RESULTS AND DISCUSSION

Drought from the LST

The LST in 2019 reached 35 °C, followed by
29 °Cin 2020, 28 °C in 2021, and 32 °C in 2022
and 2023 (Figure 8) on the basis of the analysis
of Landsat 8 OLI/TIRS images. According to re-
cords for the 2015-2019 period, 2019 was one of
the hottest years. This finding is supported by Yu-
niasih et al. (2023), who reported that Indonesia
experienced an El Nifio event in 2019, although
it was weaker than it was from 2015-2016. These
findings support the results of this study, suggest-
ing that the highest temperatures during the study
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Figure 8. LST in the Bila Watershed, south Sulawesi, Indonesia, between 2019 and 2023 (Landsat 8)
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Table 1. FR values of drought-causing factors

Factor Factor Class Pixtzll;)i(g_r;ess %PxcL f;::ii(oerl (CPI?;T_) %PnxL FR
Rainfall 1.500-2.000 mm year 340.862 92.57 834.635 47.31 1.96
>3.000 mm year* 27.346 7.43 929.631 52.69 0.14

Water 3.005 0.82 26.617 151 0.54

Open area 246 0.07 421 0.02 2.80

Scrubs 11.675 3.17 222.912 12.63 0.25

Primary forest 11 0.00 412.016 23.35 0.00
Savannah/Grassland 5.300 1.44 11.959 0.68 2.12

Land cover Paddy field 175.182 47.58 395.434 22.41 2.12
Secondary forest 55 0.01 79.269 4.49 0.00

Dryland agriculture 130.003 35.31 499.113 28.29 1.25

Residential 35.330 9.60 58.516 3.32 2.89

Mixed dryland area 6.699 1.82 56.349 3.19 0.57

Swamp scrubs 442 0.12 1.172 0.07 1.81

Plantations 260 0.07 488 0.03 2.55

Nonbuilding (-1-0) 284.996 77.40 1.621.962 91.93 0.84

Building | Low (0-0.1) 40.635 11.04 70.893 4.02 2.75
density Moderate (0.1-0.2) 35.524 9.65 57.142 3.24 2.98
High (0.2-1) 7.053 1.92 14.269 0.81 2.37

Very low (<-1) 186.803 50.73 793.231 44.96 1.13

Low (-1-0) 131.393 35.68 721.658 40.90 0.87

Hotspot area | Moderate (0-1) 20.587 5.59 84.642 4.80 1.17
High (1-2) 13.664 3.71 84.597 4.80 0.77

Very high (>2) 15.761 4.28 80.138 4.54 0.94
Non-vegetated (<0.125) 22.708 6.17 222.851 12.63 0.49

Vegetation | Sparse (0.125 — 0.25) 16.841 457 139.457 7.90 0.58
density Moderate (0.25-0.5) 70.277 19.09 220.297 12.49 1.53
Dense (>0.5) 258.382 70.17 1.181.661 66.98 1.05

Flat slope (0—8%) 229.859 62.43 556.588 31.55 1.98

Sloping (8—15%) 84.570 22.97 250.926 14.22 1.61

Slope ?ﬁg‘i‘;gﬁgy steep 34.969 9.50 201.337 11.41 0.83
Steep slope (25-45%) 13.972 3.79 330.762 18.75 0.20

Very steep slope (>45%) 4.838 1.31 424.653 24.07 0.05

<500 m 118.935 32.30 495.623 28.09 1.15

River distance | 500-2500 m 216.774 58.87 1.078.270 61.12 0.96
>2500 m 32.499 8.83 190.373 10.79 0.82

period occurred in 2019, likely triggered by the
El Nifio phenomenon.

FR model

All values in Table 1 are not direct outputs
from the spatial analysis process described in the
method section. The number of drought event
pixels in each pcator class (PxcL) was obtained
through Extarct Multi-Value to Points, while the

total number of pixels in each factor class (PnxL)
was calculated using raster statistics. These two
values were the used in Equation 3 to calculate
the FR value.

The results of the FR analysis showed that
the occurrence of drought in the Bila watershed
was mainly influenced by the density of build-
ings with moderate categories (FR = 2.98), land
cover in the form of residential (FR = 2.89),
and open area (FR = 2.80). This indicates that
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built-up areas such as high-density residential
are more sensitive to drought due to the imper-
meable nature of the surface (waterproof) caus-
ing low infiltration. In addition, the built-up area
has a large heat absorption capacity, reflected in
the high surface temperature value so as to accel-
erate the evaporation process. On the other hand,
densely populated areas increase the pressure on
household water needs, contributing to the water
deficit, especially in the dry season. Meanwhile,
open areas without vegetation on it also have a
low water absorption capacity so that the avail-
ability of groundwater is limited. These findings
are in line with the results of research by Alade-
momi et al. (2022) and Vinh et al. (2020), who
reported that an increase in NDBI values, an in-
dicator of the expansion of built areas, includ-
ing housing, contributes to increasing soil sur-
face temperatures, thereby increasing the risk of
drought. In addition, open regions also contrib-
ute to worsening drought conditions. The lack of
vegetation cover in these areas leads to relative-
ly high evaporation rates. Research by Sarminah
et al. (2019) reported that the evaporation rate
in open regions reached 80% on the basis of the
water balance approach using lysimeters.

Drought vulnerability

The values in Table 2 are derived from
drought susceptibility index (DSI) raster generat-
ed from the sum all FR rasters. Classification was
the performed using the Natural Breaks (Jenks)
method in GIS software, and the number of pixels
and area of each class were obtained automati-
cally through raster statistics.

On the basis of the DSI results derived from
the FR values, the drought vulnerability map
(Figure 9) reveals that area with moderate to
very high vulnerability is concentrated in the
downstream region. In contrast, the upstream

areas are mostly included in the low to very low
vulnerability class.

High vulnerability in the downstream part of a
watershed is associated mainly with types of land
cover, such as rice farming and dryland farming.
The findings of this study are supported by previ-
ous research. For example, Wicitra et al. (2023)
examined the dynamics of soil surface tempera-
ture during the 2020-2023 drought in Kedung-
banteng village, Tegal. They reported that high
surface temperatures, an indication of drought,
were concentrated in residential agricultural areas
and drylands. Similarly, Hu et al. (2020) reported
that the highest average surface temperature oc-
curred in built-up areas (28.6 °C), followed by
vacant land (26.0 °C) and dryland agriculture
(25.8 °C). Although most of the downstream re-
gions of the Bila watershed have high vegetation
cover, this vegetation is dominated by crops, such
as rice, which are highly dependent on rainfall
and surface water availability, especially in rain-
fed farming systems. Thus, these areas remain
vulnerable to drought.

In addition to agricultural areas, therapeutic
areas also show high drought susceptibility. This
is related to the increased water demand associ-
ated with higher building densities, especially in
housing. Wada et al. (2013) emphasized that in-
creased human water consumption significantly
contributes to drought risk.

Data validation

The ROC validation performed by compar-
ing DSI raster values at drought and non-srought
points for both the training (70%) and validation
(30%) datasets. The resulting ROC curves are
shown in Figure 10, and the corresponding AUC
values automatically generated from the SPSS
ROC analysis are presented in Table 3.

Table 2. Drought vulnerability class based on DSI values in the Bila watershed

DSl Vulnerability categories Number of pixels Area
(ha) (%)
3.11-4.88 Very low 620,463 56,436.44 35.54
4.88-6.92 Low 289,864 25,636.48 16.15
6.92-9.05 Moderate 313,681 28,183.99 17.75
9.05-11.01 High 432,380 38,944.97 24.53
11.01-13.62 Very high 107,878 9,5682.16 6.03
Total 1,764,266 158,784.04 100.00
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Table 3. AUC values from the ROC validation results
for the success rates and prediction rates of the FR
models for drought susceptibility

AUC AUC value
Model success rate 0.817
Model prediction rate 0.775

Based on the AUC classification proposed
by Balamurugan et al. (2017), the training data-
set yielded an AUC value of 0.817, which shows
excellent performance in recognizing the spatial
patterns of historical drought events in the Bila
watershed. This means that when evaluated with
historical data, the model can identify drought-
prone areas with increasing accuracy. Meanwhile,
the validation dataset achieved an AUC value of
0.775, which indicates good predictive ability. This
shows that when tested with independent (invisi-
ble) data, the model remains able to distinguish be-
tween drought and non-drought areas effectively.

The test of statistical significance of AUC
values showed p < 0.05, which confirms that the
model’s predictive ability is significantly better
than that of random classification (Ho: AUC =
0.5 is rejected). A small difference between the
AUC values of training and validation (AAUC =
0.042) indicates that the model is stable and not
overfitted, with good generalization capability for
the Bila watershed region. Overall, these results
suggest that the FR-based drought vulnerability
model developed in this study provides reliable
and reproducible predictions, and can serve as a
valuable tool for spatial drought risk assessment
and early warning planning in the region.

CONCLUSIONS

High surface temperatures have resulted in
drought in the Bila watershed for more than five
years. The affected areas are characterized by
low rainfall, moderate building density, mod-
erate vegetation density, and land cover types
such as residential, paddy fields, plantations,
and open areas, each of which has a high FR
value. Drought-prone zone mapping revealed
that areas with moderate to very high drought
vulnerability are concentrated in the middle to
downstream regions. In contrast, the low and
very low drought vulnerability classes are con-
centrated on upstream areas. On the basis of the
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vulnerability class in the Bila watershed, spatial-
ly differentiated adaptive mitigation strategies
are recommended. The upstream-central zone
focuses on vegetative measures such as refores-
tation, agroforestry, and afforestation to improve
water infiltration and hydrological stability. In
downstream zones, civil infrastructure, includ-
ing infiltration wells, biopores, retention ponds,
and drainage systems, should be prioritized and
combined with mixed agroforestry to improve
water uptake and reduce surface runoff. Densely
populated areas encourage the development of
green open spaces to lower local temperatures,
increase rainwater infiltration, and increase local
climate resilience.
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