EEET ECOLOGICAL ENGINEERING
——— &ENVIRONMENTAL TECHNOLOGY

Ecological Engineering & Environmental Technology, 2025, 26(12), 139-157
https://doi.org/10.12912/27197050/214095
ISSN 2719-7050, License CC-BY 4.0

Received: 2025.10.24
Accepted: 2025.11.15
Published: 2025.12.01

Assessment of the impact of Amizour’s mineral deposits
associated with Miocene igneous rocks on groundwater quality
in the Soummam basin, Algeria

Mahmoud Zaidi"®, Abdelhamid Saou’, Mustapha Maza',
Sabrina Bendouma?, Farid Ait Merzeg**

' Applied Hydraulics and Environment Research Laboratory, Faculty of Technology, Abderahmene Mira
University, Bejaia 06000, Algeria

2 Earth Sciences Faculty, Mining Department, Badji Mokhtar University Annaba 23000, Algeria

3 Scientific and Technical Research Center in Physical and Chemical Analyses (CRAPC), BP384 Bou-lsmail, RP
42004 Tipaza, Algeria

*# Technical Platform for Physico-chemical Analyzes (PTAPC-Bejaia), Targa Ouzemmour, 06000 Bejaia, Algeria

* Corresponding author’s e-mail: mahmoud.zaidi@univ-bejaia.dz

ABSTRACT

Water and mineral resources are of paramount importance for the economic and social development of any coun-
try. Algeria is among the countries facing a critical level of water stress, which exerts environmental pressure on
decision-making for water supply development projects and poses a significant challenge to achieving the sus-
tainable development goals (SDGs). The Amizour deposits is recognized as one of the world’s largest deposits,
however its proximity to the Soummam aquifer raises concerns about the environmental impact of its upcoming
mining operations. In this study, a hydrochemical analysis was conducted to assess the impact of the Amizour
deposits on groundwater quality. Twenty-six (26) samples were collected during the low-water period and twenty-
two (22) during the high-water period, in accordance with international standards organization (ISO) 5667 stan-
dards. Geographic information system (GIS) software was used to analyze the spatial and temporal distribution
of physico-chemical parameters. Gibbs diagrams, Pearson correlation matrices, and principal component analysis
(PCA) were applied to identify the mechanisms controlling water quality, determine the contributing factors to
the hydrochemical composition, and classify the different types and sources of pollution. The results reveal a co-
occurrence of both geogenic and anthropogenic pollution in Amizour’s groundwater, with high concentrations of
iron, lead, Manganese, and Zinc reaching 17.75 mg/L, 6.99 mg/L, 6.46 mg/L, and 4.74 mg/L, respectively.

Keywords: water resources, water stress, groundwater quality, hydro chemical analysis, Amizour deposits, geo-
genic and anthropogenic pollution.

INTRODUCTION properties (Hartman et al., 2014). Several phys-
ic-chemical and biological parameters and their

Groundwater interaction is a paramount part  interaction with each other define the water qual-

of the hydrogeological cycle, essentially con-
trolled by natural processes between water and
rock formations. However, quantitative inves-
tigations have only recently begun to shed light
on the hydrodynamic mechanisms controlling
these interactions. As the water infiltrates into the
ground, it carries several soluble and insoluble
substances that change its quality and alter its

ity (Vasistha et al., 2020) these parametric val-
ues show the current state of the water body and
therefore show the hydrogeological changes that
may affects it over time (Thitame and Pondhe,
2010). These interactions are inherently complex
in mineralized rocks, where several mechanisms
such as weathering, mineral dissolution, and ion
exchange lead to the release of major and trace

139


https://orcid.org/0009-0005-5821-6132

Ecological Engineering & Environmental Technology 2025, 26(12), 139-157

elements from host rocks into groundwater, there-
by altering groundwater chemistry. Understand-
ing these processes is important for identifying
the origin of contaminants, whether anthropogen-
ic or geogenic especially in regions with mineral-
ized formations.

Recent studies have highlighted the impor-
tance of evaluating groundwater in mineralized
regions to distinguish pollution sources, identify
the contaminants responsible, and establish ap-
propriate mitigation plans to avoid further de-
terioration of groundwater quality. Mineralized
and mining zones worldwide are known as major
sources of groundwater pollution, thus, Numer-
ous studies conducted in various geological for-
mations in North America (Chaillou et al., 2017)
Asia (Singha et al., 2022; Kumar and Krishnaa,
2021; Li et al, 2022; Rashid et al., 2023; Hao et
al.,2024), Europe (Medunic et al., 2020) and Afri-
ca (Smidaetal., 2022; Olalekan et al., 2023) have
systematically focused on the quality of ground-
water and its interactions with surrounding min-
eralized formations. In Algeria, groundwater is
a main source of drinking water supply due to
water stress and drought in many areas (Fares et
al., 2021), thus, several studies have focused on
groundwater quality by evaluating heavy metal
concentrations caused by geogenic pollution
(Saadali et al., 2022; Barkat et al., 2023).

Numerous investigations have been con-
ducted on Soummam groundwater, and various
researcher have highlighted different source of
contamination. Saadali and Dadachi (2023) iden-
tified the existence of three vulnerability zones:
medium, high, very high - using the DRASTIC
and SINTACS methodologies, while assessing
Cd, Pb and Zn pollution in the upstream part of
the present study area. Moreover, Kessasra et al.
(2021) reported that both excessive pumping and
high levels of dissolved chlorides contributed to
the pollution of alluvial aquifer of Lower Soum-
mam. In addition, Saou et al. (2012) observed that
the water becomes sodic chlorated from Oued
Ghir to the sea, and attributed the high salt con-
tent to the marine. Finally, Ouyahia et al. (2024),
by combining hydrogeochemical tracking and
differential gauging, emphasized the dominance
of the geological and hydrogeological environ-
ment, which supports the low Sommam aquifers
recharge by the tributaries of the slopes that con-
tain evaporitic Triassic formations and a Mio-
cene-aged limestone.
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Despite extensive research on anthropogenic
heavy metals contamination, double salinization
processes, and the effects of gypsum-bearing for-
mations in the Soummam region, the influence
of Amizour’s igneous rocks and their associated
mineralization to groundwater quality remains
unexplored. To address this gap, the present study
combines multivariate statistical analysis and spa-
tial distribution of physicochemical parameters of
groundwater samples to evaluate the relationship
and interactions between the Amizour mineral de-
posits and the Soummam groundwater.

MATERIALS AND METHODS

Study area description

The Amizour valley is located in the northern
part of the Soummam Watershed (Figure 1), geo-
graphically between longitudes 4°54 E to 5°3 E
and latitudes 36°37 N to 36°43 N. It is situated on
the right side of Oued Soummam and it is bounded
to the West by the Amizour River, to the East by
the Bejaia Gulf, and to the South by the Soummam
watershed limits. The region is distinguished by the
Miocene volcano-plutonic massif, which appertain
to the Maghrebides Tertiary magmatic rocks. The
study area is distinguished by a humid Mediter-
ranean climate with a monthly average tempera-
ture reaching 25.6 °C from June to September. In
contrast, the winter months have the lowest tem-
peratures of 11.4 °C. The rainfall ranges from 10.6
mm in July to 113 in in February (Benabbes et al.,
2024), with a yearly average of 750 mm (Saou et
al., 2012). The area’s topographic map (Figure 2)
shows elevations of up to 900 meters.

Several researchers (Leikine and Semroud,
1988; Assanaliev et al., 1984). focused on geo-
logical, hydrogeological and structural inves-
tigations in study area which is consisted of
both igneous and sedimentary rocks, stratified
from Triassic to quaternary period (Figure 3).
Mesozoic formations include Triassic, Jurassic
and cretaceous. The Triassic indicates Gypsum-
saline facies and occur with versicolored marls,
dolomites and Cornieule, the middle and upper
Jurassic are composed of red sandstones, pud-
dingstones, and micaceous sandstones, whereas
the lower Jurassic is composed of marly lime-
stones, limestones and silicate-conglomerate
rocks. While all of the lower, middle, and upper
Cretaceous occurs in the Soummam valley, only
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Figure 1. The Soummam watershed’s and the study region’s (Amizour) geographic location
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Figure 2. A topographic map of the Amizour’s region

the Lower Cretaceous is observed in the study
area and it is made up of marly limestone, black
schist and beige limestone. Tertiary formations
composed of the lower Eocene Marine, Marine
Oligocene, and lower Marine Miocene. The
Miocene is represented by sedimentary rocks on
the left side of Soummam river, these rocks con-
tain marl-sandstone alternation, conglomerates,
fine and coarse sandstones (Hassisséne, 1989),
while, the igneous rocks which include Tonal-
ite, Granitoid, Monzodiorite, Quartz monzonite,

Granite, Andesite, Rhyolite and Andesitic tuffs
(Semroud,1981) are located in the Amizour re-
gion on the right side of the river. The Miocene
formations with high fracturing level enhance
the water circulation and favors aquifer’s con-
stitution. Marly shale, Coarse and quartz Sand-
stones form the Oligocene. Quaternary forma-
tions located alongside the Soummam River and
its tributaries, Sand, gravel, and cobbles are its
main constituents and they are characterized by
their high — capacity of retention subterranean
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Figure 3. The study area’s geological map

The General Company of Geophysics (CGG,
1970) completed by mechanical drilling in the al-
luvial plain shows the presence of two formations
that constitute the Mio-Plio-Quaternary aquifer
of lower Soummam, a discontinuous clayey lay-
er separates these two units, indicating hydraulic
connectivity between them. According to Clinckx
(1973), this aquiclude is characterized by silty clay
from Oued Amizour to Bejaia, indicating a semi-
confined aquifer, while it is dominated by sandy
clay upstream of the study zone, signifying a un-
confined aquifer. The groundwater flow is from
western to eastern. Figure 4 shows the several min-
eral deposits of the previously discussed region.

Sampling and field measurements

The groundwater sampling protocol was de-
signed in accordance with ISO 5667-1 (ISO, 2020)
and ISO 5667-11 (ISO, 2009) standards in order
to collect twenty-six (26) samples and two (02)
samples as duplicates from the study area during
the high and the low water period. Prior to sam-
pling, the purging operation was carried out at least
three times. The calculated purge volume and the
temperature, TDS, EC, and pH were measured for
each purge volume. The samples were collected
when the temperature, conductivity, and pH chang-
es between the last two sets of field measurements
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Figure 4. Map illustrating the mineral deposits in the research area
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within the following ranges: + 0.2 °C, + 0.3%, and
+ 0.1 units, respectively. A hand-held GPS was
used to record the samples’ locations. The physical
parameters including (T°, EC, TDS and pH) were
measured on site using a certified thermometer
(HANNA checktemp), a multi-parameter (HAN-
NA HI 99300) (Figure 5a), and a pH-meter (Ohaus
starter 300). One hundred milliliters (100 ml) of
water were collected from each sampling points in
acid-washed plastic bottles, The water was filtered
using 0.45 pm membrane filter (Figure 5b), and
then acidified with nitric acid (HNO,) to a pH of
1-2 (Figure Sc), for the identification of trace ele-
ments. For the major ions, an additional 1L samples
was taken from each sampling locations. Preserva-
tion and handling procedure of water samples were
conducted according to ISO 5667-3 (ISO, 2018).
During transportation, samples were stored in a
cooling device that could keep the temperature at 5
+3 °C, as well as all laboratory test were conducted
respecting the samples maximum storage time.

Laboratory analysis

A complex-metric titration with a 0.05 mol/l
ethylene diamine tetra acetic acid (EDTA) so-
lution was utilized for calcium (Ca*?) and mag-
nesium (Mg*?) analysis. Sodium (Na*) and po-
tassium (K*) concentrations were measured
using the Flame-Photometer (Model S-931).
Ion chromatography (Dionex ICS 3000 Model)
was used to identify the chloride (CI) and bi-
carbonate (HCO,), while nitrate (NO,’) and sul-
fate (SO,?) were determined through UV visible

spectrophotometer (DR 5000). Traces elements
(Zn, Pb, Fe, Mn, Li, Ni, Cd and Co) were quanti-
fied by Graphite furnace atomic absorption spec-
troscopy (GFAAS), Analytik Jena-contrAA 800
Model. Prior to samples analysis, calibration
was performed using standards solutions (Fig-
ure 6) to ensure the accuracy and the reliability
of the measurements.

The calibration curve is always represented
graphically by plotting absorbance values of the
standard solutions on the vertical (YY) against their
known concentrations on the horizontal axis (X),
In the present study calibration curve were pre-
pared using a series of standards concentrations
ranging from 0 to 1 mg/1 (0, 0.25, 0.5, 0.75 and 1
mg/l) for Zn, Pb, Mn, Li, Cd and Co, and from 0
to 2 mg/l (0, 0.5, 1, 1.5 and 2 mg/1) for Fe and Ni
(Figure 7). The linear regression equation obtained
from calibration curve was adopted to calculate
the concentration of analytes. Figure 8 represents
the results showing the maximum concentrations
of Fe and Mn detected in sample n° 06.

The relative percent difference Equation 1
was calculated to quantify duplicate results. For
aqueous samples, an RPD of < 20% may often
considered an acceptable result.

RPD = (€1=€2)

where: C1 — concentration of analyte in sample
1 and C2 - concentration of analyte in
sample 2.

The charge balance error Equation 2 within +5%
indicates that the analytical result is acceptable.

Figure 5. (a) Multiparameter HANNA HI 99300 for TDS and EC in filed measurement, (b) in field sample’s filtration
using 0.45 um membrane filter, (c) sample acidification to pH of 1-2 by HNO,
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Figure 6. Atomic absorption spectroscopy-standards solutions for curve calibration
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Figure 7. The calibration curve with linear regression equations of iron and manganese
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Figure 8. The data output from AAS, showing absorbance and higher concentrations of Fe and Mn during the
low-water period

CBE = Y:Cations (g)—z Anions (@)

Y:Cations (mleq)+2 Anions (@)

All of the samples RPD and CBE in this study

meet the standards, indicating that the results are
reasonable and sufficient.

x 100 (2)

Statistical analysis

Data were statistically analyzed using a com-
bination of descriptive, bivariate and multivari-
ate statistical techniques to identify patterns and
relationships among the measured groundwater
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quality parameters. All statistical analyses were
performed using Microsoft Excel integrated with
the XLSTAT software package.

GIS analysis

In this study ESRI ArcGIS software (v 10.8)
was used and Kriging method was employed to
perform spatial interpolation. Both physicochem-
ical parameters and spatial information obtained
from field sampling and laboratory analysis were
compiled into a single Excel spreadsheet. To
guarantee spatial compatibility, each sampling
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point was assigned exact geographic coordi-
nates in latitude and longitude, which projected
to WGS 1984 UTM Zone 31N coordinate system
(Figure 9). Each parameter was imported into Ar-
cGIS and linked to the georeferenced sampling
point for processing to generates spatial distribu-
tion maps using kriging interpolation technique.
Ordinary kriging, used in the present study (Fig-
ure 10), generates the most effective prediction in
groundwater distribution compared to other krig-
ing techniques (simple and universal), showing
lower root mean squared error (RMSE) values
and less points with significant deviation between

estimated and predicted values (Yao, 2014). The
spherical semi variogram model was used for rep-
resenting spatial variability. Figure 11 illustrates
the pH interpolation results in the study area dur-
ing the low-water period.

The Geostatistical Analyst module of Arc-
GIS 10.8’s Cross Validation tool was utilized to
evaluates and assess the performance and reli-
ability of the variogram model. The results (Fig-
ure 12) of pH interpolation, show a mean error
(ME) close to zero (0.014), indicating no signifi-
cant bias between predicted and measured values.
Furthermore, the RMSSE value of 0.905, being
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Figure 11. Screenshot showing kriging results of pH during the low-water period
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Figure 12. Cross-validation results for the kriging model applied to pH including scatter plot of predicted vs
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close to 1, confirms the consistency and reliabil-
ity of the variogram model used for the interpo-
lation groundwater’s pH within the study area
during the low-water period. Based on the best
validated variogram through cross-validation, the
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prediction maps for the spatial distribution of var-
ious groundwater quality parameters were gener-
ated (Balaji, 2025).

Stretched symbology with the histogram
equalize option, was used for presenting the final
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Figure 13. Screenshot sowing the stretched symbology for final map visualization

map (Figure 13), in order to enhance visual con-
trast, as well as, facilitate the reading of spatial
concentration gradients.

RESULTS AND DISCUSSION

Descriptive data and spatiotemporal
distribution

All measured physical parameters and chemi-
cal elements from samples collected during both
water periods were summarized using descriptive
statistics (Table 1), including the minimum, maxi-
mum, mean and standard deviation for each vari-
able. The percentage of samples exceeding detec-
tion limits was calculated to assess the distribution
and mobilization of elements within the study area.
Notably, during the high-water period, a higher
percentage of samples showed values above the
detection limits compared to the low-water period,
this suggests that precipitation is causing a signifi-
cant weathering, diffusion and dilution of metals,
specifically Zn, Pb, Fe, Cd, Mn, and Ni.

Electrical  conductivity (EC) averaged
1450,08 £ 537,77 uS/cm in the low-water period
and 1091.7 + 504.76 uS/cm in the high-water
period, indicating that the low-water conditions
favor mineral concentrations due to the reduced
recharge, whereas high-water conditions encour-
age diffusion and dilution of dissolved ions (Fig-
ure 14). The pH ranged from 5.73 to 7.86, with an
average of 6.94 during the low-water period (Sep-
tember), and in the high-water period (March),

it varied from 6.70 to 7.77, averaging 7.18. In
both periods groundwater’s nature almost neu-
tral, except one sample in the low water period,
with acidic character referring to manganese’ and
iron’s highest values, this sample is located in the
middle of the study area near to Tala Hamza de-
posit (Figure 15).

Under natural conditions, the geochemical
content of groundwater is regulated by the prima-
ry cations Ca?*, Mg?, Na*, and K*, along with the
primary anions HCO,", SO+*, and CI" In contrast,
NO, is more frequently a consequence of human
activities on the surface (Saha et al., 2023). The
anions concentrations were in the order HCO, >
SO«*- > CI' > NO, during the low-water period
and HCO, > CI' > SO+ > NO, during the high-
water period. In contrast, cations concentrations
followed a consistent sequence of Ca®* > Na* >
Mg? > K* in both periods. The dominance of
HCO, among anions and Ca** among cations dur-
ing both periods, indicates that carbonates or/and
silicates weathering is the primary process con-
trolling the Soummam’s groundwater chemistry.
The secondary abondance of Na* among cations
and SO4* during the low-water period, along with
CI' during the high-water among highlight the
contribution of Triassic evaporitic dissolution and
marine intrusion to groundwater hydrochemistry,
which is consistent with earlier finding reported
by Saou et al. (2012), Ouyahia et al. (2024) and
Kessasra et al. (2021).

During the high-water period, major ions gen-
erally decreased in parallel with the reduction in
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Table 1. Descriptive statistical data of groundwater samples in the study area

Legend
A SEegea
PR

e

Conductivity (uS/em)

Variable Unit September 2023 (n=26) March 2024 (n=22)
Min Max Ave Std dev %>dl Min Max Ave Std dev | %>dl
T ce 18.40 22.90 20.82 1.10 100% 13.40 21.40 17.57 2.23 100%
pH pH unit 5.73 7.86 6.94 0.43 100% 6.70 7.77 7.18 0.26 100%
TDS mg/l 289.00 | 1495.00 | 750.42 | 277.54 | 100% | 141.00 | 883.00 547.05 240.53 | 100%
EC puS/cm | 556.00 | 2874.00 | 1450.08 | 537.77 | 100% | 237.00 | 1989.0 1091.7 504.76 | 100%
Ca* mgl/l 44.09 364.71 | 157.85 69.74 100% 15.79 216.00 113.44 62.27 100%
Mg?* mgl/l 12.15 98.44 39.03 19.11 100% 4.80 62.40 23.47 16.22 100%
Na* mg/l 27.00 | 184.00 | 71.03 43.67 100% 14.17 141.67 65.60 36.96 | 100%
K* mg/l 2.00 16.00 6.74 4.28 100% 3.00 22.00 8.95 5.15 100%
NO, mgl/l 4.61 48.90 17.19 10.85 100% 2.84 63.57 16.00 14.55 100%
HCO, mg/l 176.95 | 497.29 | 335.83 | 107.91 | 100% 46.97 390.40 222.89 105.76 | 100%
Cr mg/l 55.80 | 395.00 | 150.35 | 83.34 100% 44.99 346.39 141.41 80.23 | 100%
SO,2- mg/l 39.44 42199 | 173.09 | 103.20 100% 16.00 200.00 114.53 63.74 100%
Zn mg/l <dl 4.747 0.537 1.034 81% <dI 3.069 0.550 0.880 91%
Pb mg/l <dl 0.207 0.038 0.064 38% <dI 6.990 0.641 1.582 50%
Fe mg/l <dI 17.750 0.929 3.585 15% <dI 1.440 0.324 0.454 95%
Li mg/l 0.004 0.134 0.042 0.034 100% 0.009 0.098 0.026 0.019 100%
Co mg/l 0.012 0.039 0.021 0.006 100% 0.007 0.055 0.024 0.013 100%
Mn mg/l <dl 6.468 0.655 1.335 69% 0.015 4.137 0.260 0.876 100%
Cd mg/l <dI <dl <dl - 0% <dI 0.043 0.003 0.010 18%
Ni mg/l <dl <dI <dl - 0% <dl 0.188 0.012 0.041 14%

(A) (B)

Figure 14. EC distribution during (a) low-water period and (b) high-water period

total dissolved solids (TDS) and electrical con-
ductivity (EC) compared to the low water period.
However, Potassium (K+) exhibited an opposite
trend, increasing from 6.74 mg/l to 8.95 mg/l,
suggests additional inputs that’s possibly associ-
ated with human activities or agricultural runoff.

Lithium concentrations decreased from an
average of 0.042 mg/l during the low-water pe-
riod to 0.026 mg/l during the high-water period
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(Figure 16), confirming the influence of recharge
and seasonal hydrodynamics, and aligning with
Jalali (2009), reported that in rock water inter-
action, elevated temperature enhance Lithium
enrichment. During the low-water period, Co-
balt reached 0.039 mg/l (Figure 17), in the same
low-pH samples, co-occurring with elevated Fe,
Mn and Li concentrations near the Tala Hamza
deposit, which localized within igneous rocks and
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Figure 17. Spatio-temporal distribution of Cobalt during (a) low-water period and (b) high-water period

Marine Oligocene strata, suggesting theses lithol-  within agricultural area, which could be related,
ogies as a potential source of metals. according to Raza (2023), to Zn-enriched fertiliz-
During the low-water period, most samples ex- ers use. The other samples are concentrated in the

hibiting elevated Zn concentrations were located  southwest of the region between Amizour’s river
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and Ait Ouyahia deposit which could be its origin.
In contrast, in high-water period sampling points
are clustered downstream of the study area from
Ait Ouyahia deposit to the eastern side in the same
direction of groundwater’s flow (Figure 18). Lead
concentrations averaged 0.038+0.064 mg/l during
the low-water period and increased to 0.6441.582
mg/l during the high-water period (Figure 19),
highlighting a significant seasonal variation and an
important spatial heterogeneity in Pb distribution.
Iron in groundwater originates primarily from
natural source. According to previous research,
pyrite oxidation is another important geochemical
process that mobilizes iron in groundwater. David-
son (1993) noted that Fe and Mn naturally coexist
in groundwater because of similarities in chemical
properties. Likewise, in the present study, acidic
pH conditions appear to enhance iron (Fe) and
manganese (Mn) solubility during the low-water
period, with the highest Fe and Mn concentrations

coinciding with the lowest pH values in a sample
collected near to Tala Hamza deposit. During the
low-water period, iron distribution was localized,
with detectable concentrations occurring in only
15% of the samples collected in proximity to Tala
Hamza area (Figure 20A). On the other hand, iron
was identified in 95% of samples during the high-
water period (Figure 20B), indicating elevated
concentrations downstream of Tala Hamza, which
suggests iron mobilization and transport under
recharge conditions. The Manganese exceed the
detection limits in all samples (Figure 21) in both
periods highlighting their geological origin.

As stated by Abraham et al. (2024), cadmium
has been identified as the heavy metal that poses
the highest concern to the environment because
of its harmful impacts. In the present study, Cad-
mium exhibited a trend similar to that of Nickel
(Figure 22). Their concentrations exceed the
detection limits in only 18% and 14% of the

A)

(B)

Figure 18. Spatio-temporal distribution of Zinc during (a) low-water period and (b) high-water period

(A)

(B)

Figure 19. Spatio-temporal distribution of lead during (a) low-water period and (b) high-water period
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Figure 20. Spatio-temporal distribution of Iron during (a) low-water period and (b) high-water period
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Figure 21. Spatio-temporal distribution of Manganese during (a) low-water period and (b) high-water period
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Figure 22. Spatial distribution of cadmium (A) and nickel (B) during high-water period

samples, respectively, during the high-water pe- Factors controlling groundwater quality

riod, whereas, both metals were below detection

limits during the low-water period. The highest The Gibbs diagram shown in Figure 23 il-
concentrations of Cadmium and Nickel coincided  lustrates the mechanism of natural evolution of
with maximum nitrate levels (63.57 mg/l) near the groundwater chemical component. The rock
the Amizour river, suggesting a potential anthro- ~ dominance is the essential process influencing
pogenic source for these metals’ enrichment. the groundwater chemistry in both water periods.
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Figure 23. Gibb’s plot showing major processes controlling groundwater chemistry

Evaporation domain is found only during the low
water period, whereas, the precipitation process
does not occur in the aquifer.

According to the Ca*/Na*-HCO,/Na* and
Ca?"/Na*-Mg?#/Na* diagrams (Figure 24), sili-
cate weathering is the main geochemical process
affecting groundwater quality in the study area.
Considering the geological context, silicate min-
erals could be pyroxenes, plagioclase, biotite and
feldspars, which are found in plutonic and volca-
nic rocks, and also could be from Sandstone oc-
curred in the region. To understand the influence
of silicate weathering, The sodium concentrations
are plotted against the chloride concentrations
(Figure 25). Most of groundwater samples lie
below the 1:1 line, indicating excess of chloride
compared to sodium.

The Na/Cl ratio falls to less than one, indi-
cates that the sodium has been released from the
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groundwater, as a result of silicate weathering
and reverse ion exchange, which is identified as
a major hydrogeochemical process governing the
groundwater chemistry as shown by Chadha dia-
gram (Figure 26).

Multivariate analysis of groundwater

The main purposes of multivariate statistical
analysis of groundwater are to determine the vari-
ables influencing its quality and identify pollution
sources. It serves to reduce the volume of data
by grouping water samples with similar proper-
ties and finding correlations between water qual-
ity and its geological or anthropogenic environ-
ment. In this study, principal component analysis
(PCA) and correlation matrix analysis were used
to comprehend the relationship within groundwa-
ter quality data and analyze multiple parameters
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Figure 24. Mg*#%/Ca* plot versus Na* and HCO,/Ca* plot versus Na*
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Figure 26. Chadha diagram of groundwaters samples

simultaneously. Although the PCA (Table 2) re-
duce all measured physicochemical parameters
into a smaller sets of independents components,
the Pearson correlation coefficient (Table 3)
measure of the linear correlation between two
variables.

Five components with eigenvalues>1 were
identified from the chemical variables data set us-
ing principal component analysis (Table 2) Their
cumulative percentage is 74,47% in low- water
period and 76,35% in high-water period.

The first factor represents 36.8% of the total
variance, was primarily composed of TDS, EC,
Na*, K*, SO,?, lithium, CI and Ca*? during low-
water period, while it shows 32.98% of the total
variance, represented by EC, TDS, Ca*2, Na', CI,
HCO,, SO,?, NO, and lithium during high-water
period. The change in influencing variables in
both periods can be associated with variations in

patterns of rainfall, in addition, it might be related
to water-rock interaction, dissolution of Gypsum
and Halite as well as natural processes including
silicate weathering, seawater intrusion, reverse ion
exchanges. Chloride exhibits a strong correlation
in both periods with Na*, indicating that the rock
salt (halite) serves as their principal source. How-
ever, SO,* and CI" show a moderate correlation
during the two periods of September (0.66) and
March (0.69), whereas SO,*~ has a strong correla-
tion with Ca*? (r=0.86) during both periods, point-
ing to SO, is mainly generated by evaporites dis-
solution (gypsum, anhydrites) of trias genesis.
Cadmium and nickel showed the strongest re-
lationship (0.97) during the high-water period, as
well as their correlation with NO,, suggests that
agricultural practices are the source of these pol-
lutants. The two elements (Cd and Ni) represent a
significant loading on the second component (F2)
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showing 17.25% of the total variance during the
high-water period.

During the low-water period, the same com-
ponent (F2) explains 15.51% of the total variance
and describes the significant contributions of Mn
(0.72), Fe (0.71), Co (0.68), Mg (0.49) and nega-
tively with pH (-0.54). The Pearson matrix ex-
plores the very high positive correlation between
Fe and Mn (0.87) in September period, as well
as pH has a moderately negative correlation with
these two variables, highlighting that an acidic
environment stimulates the release of these met-
als, furthermore, they have a moderate correla-
tion with Cobalt, in addition, a moderate correla-
tion between Iron and Magnesium was observed.
Considering these results of PCA and correlation
matrix with the region’s geological background
and the spatial distribution of these elements near
to Tala Hamza (Ait Bouzid) deposit, highlights
the contribution of Oligocene quartzite-sandstone
fragments enclosed in pyroclastic breccias and
Silicate minerals of igneous rocks such pyroxenes
and biotite in their presence in the groundwater.

The loading of HCO, on F3 (0.6) during the
low-water period, and its correlation with both

Ca* and Na* indicates its release into ground-
water by the calcite dissolution from limestone
of lower Cretaceous observed in the study area
and by the dissolution of sodium-bearing silicate
minerals. During the high-water period, the third
component exhibit a moderate negative value
for lead (-0.57) and zinc (-0.45) showing that
these two elements have a negative contribution
to this factor, in addition to the Pearson matrix
that shows a moderate correlation (0.51) between
these two elements, which are also moderately
correlated with iron, emphasizing presence of
common origin for these three metals (iron, zinc
and lead). This source could be the natural leach-
ing of these polymetallic elements from the local
deposits, particularly Tala Hamza, which is oc-
curs in the center of the study area. F3 accounts
8.62% and 9.79% of the total variance in low-wa-
ter and high-water period respectively.

In September, F4 and F5 accounts 7.31% and
6.22% of the total variance respectively. Howev-
er, the fourth component encompasses zinc (0.7)
which indicates high concentration adjacent the
Soummam River and also between the Amizour
river and Ait Ouyahia deposit, implying that its

Table 2. Correlation between variables and factors from PCA

Variables Low — water period High — water period
F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

Ph -0.374 -0.543 0.210 0.341 0.098 -0.024 0.690 0.254 -0.030 0.110
TDS 0.953 -0.243 0.133 -0.074 -0.063 0.926 -0.183 -0.178 -0.195 0.010
EC 0.951 -0.245 0.136 -0.086 -0.062 0.980 0.106 -0.094 -0.020 0.011
Ca* 0.740 -0.393 0.416 0.075 -0.191 0.868 0.245 0.094 -0.223 0.147
Mg?* 0.427 0.485 -0.082 -0.041 0.272 0.404 -0.048 -0.424 0.099 -0.521
Na* 0.895 -0.192 -0.181 -0.121 0.062 0.861 -0.248 0.018 -0.173 -0.029
K* 0.861 -0.228 -0.237 -0.116 0.071 0.135 -0.210 -0.400 0.672 0.394
NO, -0.043 -0.530 -0.111 -0.440 0.095 0.626 0.445 0.024 0.414 -0.188
HCO, 0.531 -0.152 0.601 0.219 -0.046 0.805 0.301 0.051 -0.203 0.009
Cl 0.769 -0.308 -0.271 -0.267 0.020 0.841 -0.164 -0.018 0.107 -0.053
SO, 0.836 -0.007 0.292 0.022 -0.105 0.802 0.111 -0.330 -0.324 -0.092
Zn 0.374 -0.106 -0.138 0.698 0.098 -0.245 0.379 -0.452 -0.349 0.243

Pb -0.047 0.195 0.333 -0.235 0.653 -0.093 0.368 -0.573 -0.499 0.319

Fe 0.528 0.711 -0.207 -0.172 0.106 -0.596 0.296 -0.290 -0.370 0.279

Li 0.807 0.233 -0.155 0.241 0.214 0.359 -0.121 0.223 0.200 0.358
Co 0.245 0.683 0.262 0.093 -0.335 0.145 -0.401 0.559 -0.228 0.422
Cd 0.318 0.830 0.034 0.203 0.119
Mn 0.610 0.715 -0.074 0.071 -0.003 0.294 -0.455 0.015 0.115 0.659

Ni 0.329 0.808 0.134 0.339 0.070
%Variance | 36.808 15.509 8.616 7.313 6.222 32.980 17.249 9.790 8.764 7.567
> variance 36.808 52.317 60.933 68.246 74.468 32.980 50.229 60.019 68.783 76.350
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Table 3. Pearson correlation matrix of physico-chemical parameters of groundwater

Compants| pH | EC [TDS| Ca* | Mg* | Na* | K* |HCO,| CI' [SO4|NO, | Zn Pb | Fe Li Co | Cd | Mn | Ni
pH 1.00(0.25|0.29|0.25(0.19| 0.18 | 0.17 | 0.27 | 0.20 | 0.15 | 0.13 | 0.02 | 0.29 | 0.10 | 0.35 [-0.22 | 0.51 |-0.32| 0.49
EC -0.2411.00|0.97|0.91 | 0.64 | 0.91 | 0.43 | 0.80 | 0.90 | 0.85 | 0.48 |-0.19| 0.00 |-0.47| 0.40 | 0.24 | 0.01 | 0.39 |-0.01
TDS -0.2410.91|1.00| 0.86 | 0.66 | 0.89 | 0.44 | 0.76 | 0.86 | 0.83 | 0.51|-0.17| 0.03 |-0.48| 0.23 | 0.16 | 0.06 | 0.31 | 0.03
Ca*? -0.09/0.89|0.89| 1.00 | 0.49 | 0.70 | 0.34 | 0.85 | 0.70 | 0.86 | 0.46 |-0.05| 0.26 |-0.22| 0.40 | 0.14 | 0.12 | 0.25 | 0.07
Mg? -0.11{0.09|0.08|-0.19| 1.00 | 0.66 | 0.30 | 0.52 | 0.64 | 0.62 | 0.42 |-0.10|-0.22 (-0.48| 0.11 |-0.02|-0.15| 0.03 |-0.14
Na* -0.23|0.88|0.88| 0.67 | 0.01 | 1.00 | 0.48 | 0.65 | 0.96 | 0.72 | 0.43 |-0.20|-0.15|-0.47| 0.37 | 0.34 |-0.16 | 0.45 |-0.17
K* -0.26|0.87|0.87| 0.64 | 0.05| 0.98 | 1.00 | 0.20 | 0.48 | 0.50 | 0.57 |-0.12|-0.13|-0.24| 0.11 |-0.01| 0.07 | 0.44 | 0.11
HCO,” |0.52|0.24|0.24| 0.37 |-0.05| 0.06 | 0.06 | 1.00 | 0.58 | 0.62 | 0.49 |-0.23|-0.09|-0.36 | 0.37 | 0.22 |-0.03| 0.12 |-0.01
Cl -0.27|0.85|0.84| 0.65 | 0.19 | 0.88 | 0.84 | -0.08 | 1.00 | 0.69 | 0.44 |-0.26|-0.23|-0.53| 0.40 | 0.38 | -0.11 | 0.46 (-0.09
SO, |[-0.39(0.87|0.87|0.86 | 0.06 | 0.68 | 0.67 | 0.01 | 0.66 | 1.00 | 0.35 | 0.17 | 0.38 |-0.19| 0.24 | 0.06 | 0.03 | 0.36 |-0.07
NO, 0.15(0.04|0.04 | 0.02 |-0.11| 0.04 | 0.04 | 0.27 | 0.12 |-0.27 | 1.00 |-0.14|-0.21|-0.39| 0.06 |-0.20| 0.63 |[-0.13|0.70
Zn 0.10{0.36(0.36| 0.31 | 0.03 | 0.38 | 0.40 | 0.10 | 0.31 | 0.28 |[-0.16| 1.00 | 0.51 | 0.46 |-0.32|-0.04 | 0.20 |-0.06 | 0.08
Pb -0.07/0.01|0.00| 0.05 [-0.05| 0.03 | 0.08 | 0.00 [-0.03| 0.07 |-0.07|-0.15| 1.00 | 0.62 |-0.12|-0.31| 0.28 |-0.09 | 0.08
Fe -0.58(0.27|0.27 (-0.01| 0.51 | 0.22 | 0.30 | -0.50 | 0.43 | 0.31 |-0.12| 0.03 | 0.07 | 1.00 |-0.29|-0.25|-0.02|-0.16 |-0.10
Li -0.34(0.71|0.71| 0.55 | 0.32 | 0.65 | 0.68 | -0.14 | 0.69 | 0.73 |-0.31| 0.48 | 0.08 | 0.51 | 1.00 | 0.06 | 0.03 | 0.30 | 0.07
Co -0.25/0.03|0.03|-0.04| 0.18 |-0.09 |-0.03| -0.21 |-0.01| 0.15 |-0.35| 0.00 [-0.01| 0.60 | 0.05 | 1.00 [-0.21| 0.55 [-0.20
Cd - - - - - - - - - - - - - - - 1.00 |-0.08|0.97
Mn -0.59|0.38|0.39| 0.17 | 0.33 | 0.29 | 0.36 | -0.41 | 0.37 | 0.49 [-0.36| 0.23 | 0.08 | 0.87 | 0.65 | 0.62 1.00 |-0.07
Ni - - - - - - - - - - - - - - - - - 1.00

geogenic and anthropogenic source. The impor-
tant contribution of lead (0.65) on F5 with their
occurrence from Ait Ouyahia Theddaden and Tala
Hamza deposits to the sea area, highlight the con-
tribution of naturel processes as leaching to lead
appearance. During the high-water period F4 sug-
gests that potassium fertilizers and home wastewa-
ter discharges are significant sources of K+, in ad-
dition the fifth factor accounts 7.57% of total vari-
ance and reveal the geogenic source of Manganese.

CONCLUSIONS

The present study represents the first and
only research focused on the direct impact of
Amizour’s deposits associated to magmatic com-
plex on the Soummam groundwater quality, by
providing the needed informations to properly
identify the nature and sources of pollution that
threaten this vital resource through two different
periods, high water and low water periods. We
observed high concentrations of heavy metals in
groundwater samples, the concentrations of Fe,
Pb, Mn and Zn reach 17.75 mg/l, 6.99 mg/l, 6.46
mg/l, and 4.74 mg/l, respectively. Compared to
the low-water period, the high-water campaign
comprises more samples with values over the

detection limits, outlining significant weathering,
transport and dilution of metals, notably Zn, Pb,
Fe, Cd, Mn, and Ni caused by rainfall.

GIS-based modeling provided relevant maps
exhibiting both temporal and spatial distribution
of groundwater’s physico-chemical properties,
highlighting several localized contaminations
within the study area. Furthermore, the Amizour’s
groundwater facies variability is mostly influ-
enced by water-rock interaction mechanisms as
the Gibbs diagram illustrates, with silicate min-
eral appearing as the region’s predominant geo-
logical process.

Both geogenic and anthropogenic sources of
pollution are revealed by statistical analysis apply-
ing PCA and a Pearson correlation matrix. The sig-
nificant loading of cadmium (Cd) and nickel (Ni)
on F2, as well as the strong correlation (r=0.97)
between these metals during the high-water peri-
od confirm the impact of anthropogenic activities
such as fertilizer’s runoff. Furthermore, a moder-
ate correlation between iron (Fe), zinc (Zn) and
lead (Pb) indicates the geogenic pollution resulting
from Amizour’s deposits and water interactions.

The study highlights that the enrichment of
iron (Fe), manganese (Mn) and cobalt (Co) dur-
ing the high-water period is mainly geogenic,
impacted by pH-influenced processes. This
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localized enrichment near to Tala Hamza deposit,
emphasize that their origin is primarily related to
the silicate minerals weathering such as Pyroxene
and Biotite from Miocene Igneous rocks as well
as from Quartzite-sandstone of the Oligocene ep-
och, encased within pyroclastic breccias.

This work serves as a data bank for advancing
sustainable development goals in the Amizour’s
region. It may also be regarded as a valuable
reference on the baseline quality of Soummam
groundwater quality prior to any potential influ-
ence by mining operations in the upcoming years.
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