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INTRODUCTION

Indonesia has committed to achieving Net 
Zero Emissions by 2060, with an interim plan to 
reduce emissions by 834 million tons CO₂ or 29% 
relative to a business-as-usual scenario by 2030. 
By 2018, national mitigation actions had already 
delivered a 7.55% reduction through improved 
sustainable land management and increases in 
tree cover (UNFCCC, 2022). The national forest 
area in 2020 was reported at 95.6 million hect-
ares, equivalent to 50.9% of land area, including 
an estimated 3.31 million hectares of mangroves 
with substantial potential for carbon uptake 
and storage (Government of Indonesia, 2022). 

Mangrove ecosystems are among the most effi-
cient natural systems for sequestering and storing 
carbon. Although they occupy relatively small 
coastal zones, their carbon stocks can exceed 
those of many terrestrial forests. Mangrove de-
forestation, estimated at 0.7% of total forest area, 
has been associated with emissions of 0.02 to 
0.12 pg of carbon per year, which is roughly 10% 
of global deforestation emissions (Donato et al., 
2011; McLeod et al., 2011). Understanding the 
short-term and interannual behaviour of carbon 
uptake is therefore critical. Gross primary pro-
ductivity (GPP) measures the total carbon fixed 
through photosynthesis over a given period and is 
a central indicator for evaluating the efficiency of 
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vegetation in assimilating atmospheric CO₂ (Run-
ning et al., 2004; Zhao et al., 2005).

Bali Province faces notable environmental 
pressure due to rapid population growth and ur-
ban expansion associated with tourism. The pro-
vincial population reached 4.32 million in 2020 
with a density of 747 people per square km, up 
from 673 people per km2 in 2010, with an abso-
lute increase of approximately 348,000 people 
between 2013 and 2023 (Badan Pusat Statistik, 
2024). Land conversion from vegetated surfaces 
to built-up areas for tourism infrastructure reduc-
es the capacity of terrestrial landscapes to absorb 
carbon. This context elevates the strategic impor-
tance of mangrove ecosystems in provincial cli-
mate mitigation and coastal management.

Satellite remote sensing provides spatially 
and temporally consistent observations for track-
ing land-cover change and vegetation productivity 
(Nuarsa, 2016; Nuarsa et al., 2015). Vegetation in-
dices such as the enhanced vegetation index (EVI) 
and the land surface water index (LSWI) are widely 
used as inputs to light-use-efficiency frameworks, 
including the Vegetation Photosynthesis Model, to 
estimate GPP as a proxy for photosynthetic car-
bon uptake (Xiao et al., 2010; Xiao et al., 2004). 
In Bali’s urban context, previous studies reported 
a decline in total terrestrial GPP of 7,793.96 tC per 
year, or 12.65%, over 1995 to 2014, linked to ur-
banization driven by tourism (Nuarsa et al., 2018). 
In contrast, within Sanur from 2006 to 2015, green 
open spaces increased GPP by 26% despite de-
velopment pressure (As-syakur et al., 2023). For 
mangroves near Benoa Port, GPP reportedly de-
clined from 28.790 tC per year in 2016 to 26.223 
tC per year in 2020, likely reflecting land-cover 
change and development pressures (Romadhoni et 
al., 2022). Other work in Tahura Ngurah Rai has 
focused on total carbon stocks rather than photo-
synthetic uptake, using both satellite data and field 
measurements (Hidayah et al., 2024; Suardana et 
al., 2023; Sugiana et al., 2024). Collectively, these 
studies underscore the sensitivity of productivity to 
urbanization and management, yet most are spa-
tially limited to specific districts, use earlier time 
windows, or emphasize carbon stocks rather than 
annual GPP dynamics for mangrove ecosystems at 
the provincial scale.

This study addresses that gap by quantifying 
the annual dynamics and trends of mangrove GPP 
in Bali Province for 2019 to 2024 using high-res-
olution Sentinel-2A surface reflectance data as 
the primary input. The analysis focuses on two 

representative mangrove systems, Taman Nasi-
onal Bali Barat and Tahura Ngurah Rai in Benoa 
Bay, and applies a consistent light-use-efficiency 
framework to derive annual GPP with attention to 
interannual variability and site-specific differenc-
es. The objective is to provide a province-level, 
annually resolved baseline of mangrove photo-
synthetic carbon uptake that can inform coastal 
conservation, restoration planning, and blue-car-
bon accounting in Bali.

METHOD

Study area

Bali Province lies at approximately 8°25′23″ 
South and 115°14′55″ East in the tropical Indo-Pa-
cific. Two representative mangrove systems were 
analyzed. The first is Tahura Ngurah Rai in Benoa 
Bay in southern Bali, which is embedded in a peri-
urban coastal setting with active management. The 
second is Taman Nasional Bali Barat in the north-
west, which represents a more protected coastal 
mosaic (Figure 1). These two systems encompass 
the largest contiguous mangrove extents in the 
province and capture a gradient of hydrological and 
anthropogenic conditions relevant to productivity.

Datasets and analysis

The analysis spans the years 2019 to 2024. The 
core optical input is Sentinel-2A Surface Reflec-
tance, Harmonized, accessed through Google Earth 
Engine (collection COPERNICUS/S2_SR_HAR-
MONIZED). Supporting environmental inputs are 
daily ERA5 reanalysis for surface radiation and 
basic meteorology (ECMWF/ERA5_DAILY), and 
MODIS Land Surface Temperature (LST) for can-
opy thermal conditions (MODIS/061/MOD11A1). 
All datasets are open access through the Earth 
Engine platform (https://earthengine.google.com) 
(Gorelick et al., 2017). A summary of the datasets 
employed in this study and their respective func-
tions is provided in Table 1.

Preprocessing and annual compositing

All processing was conducted in Google Earth 
Engine for scalable cloud computation (Badruzza-
man et al., 2025; Pflumm et al., 2025; Praticò et al., 
2021). Sentinel-2A scenes were filtered to 2019–
2024 and clipped to site boundaries that were fixed 
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for all years. Cloud and cloud-shadow contamina-
tion were minimized using the Sentinel-2 cloud 
probability asset in combination with the QA60 
bitmask. Conservative probability thresholds were 
applied, and remaining artifacts near cloud edges 
were removed using spectral morphology tests. 

Shortwave infrared bands at 20 m were resampled 
to 10 m to match the native resolution of the blue, 
red, and near-infrared bands. Annual composites 
were then generated by aggregating valid observa-
tions within each calendar year after quality mask-
ing. Sentinel-2A surface reflectance removes the 

Table 1. Data materials and Google Earth Engine (GEE) datasets used for quantifying mangrove gross primary 
productivity (GPP)

Data material Dataset name in GEE GEE Asset ID & Catalog link Purpose in analysis

Optical 
imagery

Harmonized Sentinel-2 
MSI: MultiSpectral 
Instrument, Level-2A (SR)

https://developers.google.com/
earth-engine/datasets/catalog/
COPERNICUS_S2_SR_
HARMONIZED

Used to calculate annual median 
vegetation indices (EVI, LSWI) for 
deriving the fPAR (fPARchl) and water-
stress scalar (Wscalar)

Meteorological 
data

ERA5-Land Daily 
Aggregated - ECMWF 
Climate Reanalysis

https://developers.google.com/earth-
engine/datasets/catalog/ECMWF_
ERA5_LAND_DAILY_AGGR

1. Provided ’surface_solar_radiation_
downwards_sum’ to calculate annual 
Photosynthetically Active Radiation 
(PAR).
2. Provided ’temperature_2m’ as a 
fallback for missing LST data

Land surface 
temperature

MOD11A2.061 Terra land 
surface temperature and 
Emissivity 8-Day Global 
1km

https://developers.google.com/earth-
engine/datasets/catalog/MODIS_061_
MOD11A2

Used to derive the ’LST_Day_1km’ band 
for calculating the monthly and annual 
average temperature-scalar (Tscalar)

Study area 
boundary

User-Defined Geometry 
(Bali Mangrove)

Research archive of mangrove areas 
mapped through random forest 
machine learning

Defines the spatial extent of the analysis. 
Used to filter all image collections and 
clip the final GPP output

Figure 1. Spatiotemporal overview of the mangrove ecosystem in Tahura Ngurah Rai for 2019 to 2024 
(RGB composite: NIR, SWIR1, SWIR2)
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need for top-of-atmosphere conversions, which 
ensures radiometric consistency across the record 
without additional transformations.

Vegetation indices

Vegetation indices sensitive to canopy green-
ness and water status were computed from sur-
face reflectance. The enhanced vegetation index 
uses near-infrared, red, and blue bands and is less 
prone to saturation in dense canopies. The land 
surface water index uses near-infrared and short-
wave infrared bands and is sensitive to canopy 
water content (Equation 1 and Equation 2).
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where:	ρNIR is Sentinel-2A near-infrared reflec-
tance (Band 8, nominal 842 nm), ρred is 
red reflectance (Band 4, nominal 665 nm), 
ρblue is blue reflectance (Band 2, nominal 
490 nm), and ρSWIR is shortwave infrared 
reflectance (Band 11, nominal 1610 nm). 
All reflectances are dimensionless surface 
reflectance values.

Fraction of absorbed PAR by chlorophyll

Following the vegetation photosynthesis 
model (VPM), the fraction of photosyntheti-
cally active radiation absorbed by chlorophyll, 
fPARchl, was estimated directly from EVI. This 
approach reduces structural confounding and 
maintains temporal consistency among years 
(Equation 3).
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For sensitivity checks, we also computed a 
classical NDVI-based relationship for the frac-
tion of absorbed PAR by the canopy (Myneni and 
Williams, 1994),fAPAR (Equation 4).
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where:	  fPARchl and fPAR are dimensionless frac-
tions, EVI and NDVI are vegetation in-
dices derived from Sentinel-2A surface 
reflectance, and the primary analyses use 
fPARch = EVI.

Photosynthetically active radiation

Daily downward surface shortwave radia-
tion from ERA5 was converted to photosynthet-
ically active radiation (PAR) and then aggre-
gated to annual totals on the Sentinel-2A grid 
(Equation 5).
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where:	PAR is photosynthetically active radia-
tion in MJ m-2 day–1, SW↓ is ERA5 daily 
surface solar radiation downward in J m–2 
day–1, α is the broadband-to-PAR conver-
sion factor, and 10–6 converts joules to 
megajoules. 

A value of α = 0.473 was used as a standard 
approximation for the fraction of shortwave en-
ergy in the PAR waveband. Annual PAR was com-
puted by summing daily values within each cal-
endar year.

VPM light-use efficiency model for GPP

Gross primary productivity was estimated us-
ing the VPM formulation in energy units. Annual 
pixel-level GPP is given by the product of light-
use efficiency, the fraction of radiation absorbed 
by chlorophyll, and the available photosyntheti-
cally active radiation (Xiao et al., 2010; Xiao et 
al., 2004). The computation of GPP is presented 
in Equation 6.
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where:	GPP is gross primary productivity in g 
C m–2 period–1, εg is the realized light-
use efficiency in g C MJ–1, fPARchl is the 
chlorophyll-absorbed fraction of PAR. 

The term εg is decomposed into a maximum 
efficiency and a set of environmental scalars 
(Equation 7).
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where:	 ε0 is the maximum light-use efficiency for 
tropical vegetation, Tscalar is the tempera-
ture scalar, Wscalar is the water scalar, and 
pscalar is the phenology scalar. 

A commonly used tropical value was ad-
opted for ε0 based on the VPM literature, and 
the same value was used for all years to preserve 
comparability.
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Temperature scalar

The temperature response follows a peaked 
function using MODIS land surface temperature 
as the thermal driver (Equation 8).
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where:	TT is local mean land surface tempera-
ture in degrees Celsius, Tmin is the mini-
mum temperature for photosynthesis, 
Tmax is the maximum temperature for 
photosynthesis, and Topt is the optimum 
temperature. Tropical values of Tmin = 0 
°C , Tmax = 48 0 °C, and Topt  = 28 °C 
were used.

Water scalar

The canopy moisture constraint uses LSWI 
normalized by its annual maximum (Equation 9).
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where:	LSWI is the land surface water index at a 
given observation and LSWImax is the an-
nual maximum LSWI for the same pixel.

Phenology scalar

Mangrove canopies in the tropics retain pho-
tosynthetically active foliage for most of the year. 
Therefore, a value of Pscalar = 1 was adopted for all 
observations.

Annual integration and site-level aggregation

After computing pixel-level GPP for each 
valid Sentinel-2A observation date, daily PAR 
fields were matched by date and location, and 
annual GPP totals were obtained by temporal 
integration. Pixels were retained only if the 
fraction of valid, cloud-free Sentinel-2A obser-
vations exceeded a minimum threshold within 
the year, which reduces the risk of temporal 
aliasing. Site-level annual GPP was computed 
as the mean of valid pixels within each man-
grove boundary for Tahura Ngurah Rai and 
Taman Nasional Bali Barat. Companion data-
coverage layers were stored to document obser-
vation density.

Quality control and sensitivity checks

Quality control combined conservative cloud 
masking, spectral edge removal, and robust statis-
tics during compositing to limit the influence of 
outliers. Sensitivity checks evaluated the stability 
of results to the choice of fPARchl by comparing 
EVI-based fPARchl with the NDVI-based fAPAR 
formulation. Additional checks summarized the 
temporal behavior of the environmental scalars  
Tscalar , Wscalar, and Pscalar to ensure that no single 
factor produced unrealistic interannual swings.

RESULTS

Sentinel-2A annual composites and spatial 
context

Annual Sentinel-2A surface reflectance com-
posites for 2019–2024 show stable near-infrared 
signals over core mangrove stands, with stron-
ger shortwave-infrared variability along tidal 
margins. In Tahura Ngurah Rai, the coastal mo-
saic that includes channels, embankments, and 
built areas is clearly resolved, while contiguous 
canopy blocks on the western and southern sec-
tors display consistent near-infrared reflectance 
through time. These patterns are visible in the 
annual three-band render that combines near-in-
frared, shortwave-infrared 1, and shortwave-in-
frared 2. As seen in Figure 1, spatial consistency 
in core stands contrasts with dynamic moisture 
signals around channels and embankments. In 
Taman Nasional Bali Barat, core stands exhibit 
steady near-infrared reflectance across years, 
and changes are more apparent along edges that 
interact with bays and tidal flats, as illustrated 
in Figure 2. These spatial differences anticipate 
where environmental scalars are most likely to 
modulate annual GPP. 

Spatial distribution of annual GPP

Maps of annual GPP derived from the VPM 
framework reveal a coherent spatial hierarchy of 
productivity within each ecosystem. In Tahura 
Ngurah Rai, high values cluster in the protected 
blocks with dense canopy, while lower values 
occur near mixed pixels that include open water, 
muddy substrates, or built structures. As seen in 
Figure 3, these gradients are stable across years 
but modulated in magnitude by interannual 
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Figure 2. Spatiotemporal overview of the mangrove ecosystem in Taman Nasional Bali Barat for 2019 to 2024 
(RGB composite: NIR, SWIR1, SWIR2)

Figure 3. Spatial distribution of gross primary productivity (GPP) in the Tahura Ngurah Rai mangrove 
ecosystem from 2019 to 2024. The dotted circle highlights a persistent area of low GPP (yellow-orange colours), 

while dark blue indicates high GPP values
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Figure 4. Spatial distribution of gross primary productivity (GPP) in the mangrove ecosystem of Taman 
Nasional Bali Barat from 2019 to 2024. Yellow-orange colours indicate areas of low GPP, while dark blue 

indicates high GPP values

changes in moisture and radiation. In Taman 
Nasional Bali Barat, as shown in Figure 4, peak 
values align with the interior of mature stands, 
whereas margins that experience greater tidal ex-
change show lower and more variable GPP. The 
spatial configuration indicates that fPARchl tends 
to be high and steady in interior canopies, while 
the water scalar varies more strongly in edge en-
vironments where shortwave-infrared indices 
capture moisture dynamics. 

Zonal analysis across ecosystems

The zonal statistics clarify how spatial struc-
ture translates into annual productivity differenc-
es. Across zones, the highest mean GPP during 
2019–2024 occurs in Zone VI with 4.386 g C m⁻² 
yr⁻¹, followed by Zone VII with 3.971 g C m⁻² 
yr⁻¹, Zone IV with 3.846 g C m⁻² yr⁻¹, and Zone 
VIII with 3.774 g C m⁻² yr⁻¹. Intermediate means 
are found in Zone I with 3.629 g C m⁻² yr⁻¹ and 
Zone II with 3.553 g C m⁻² yr⁻¹, while the lowest 
occurs in Zone V with 2.756 g C m⁻² yr⁻¹. Vari-
ability is lowest in Zone IV, where the coefficient 
of variation is 1.6%, indicating exceptional year-
to-year stability. Variability is highest in Zone V, 
where the coefficient of variation reaches 12.8%, 
consistent with environmental pressure and spec-
tral mixing at the edge of landfill-affected areas. 

As seen in Figure 5, the zone layout spans both 
ecosystems and preserves these contrasts for con-
sistent interannual comparison. 

When zones are separated by ecosystem, 
Zones I and II represent Taman Nasional Bali 
Barat. Zone I shows a gentle decline from 3.666 g 
C m⁻² yr⁻¹ in 2019 to 3.522 g C m⁻² yr⁻¹ in 2024, 
equivalent to a linear decrease of 28 g C m⁻² yr⁻² 
and a net change of −3.9%. The pattern suggests 
reduced canopy moisture in some shoreline seg-
ments, leading to lower water scalars. Zone II 
increases from 3.305 g C m⁻² yr⁻¹ to 3.966 g C 
m⁻² yr⁻¹, a rise of about 20%, which is consistent 
with modest gains in fPARchl in interior stands and 
more favorable moisture conditions along edges. 
Zones III through VIII correspond to Tahura Ngu-
rah Rai. Zone VI is consistently the highest across 
all years with the sequence 4,458, 4.312, 4.221, 
4.188, 4.658, and 4.481 g C m⁻² yr⁻¹, reflecting 
a protected block with dense canopy where EVI 
and fPARchl remain high and the water scalar re-
mains favorable. Zone IV also maintains high and 
stable values, which aligns with minimal edge 
disturbance and a mature canopy structure. Fig-
ure 6 summarizes the zonal time series and high-
lights the contrast between stable interior zones 
and more variable edge zones. 

Zone V, located around the Suwung landfill, 
has the lowest mean and the highest variability. 
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Lower EVI and LSWI in mixed pixels that include 
open water or exposed substrate reduce fPARchl 
and the water scalar, which depresses GPP. Even 
so, Zone V exhibits a partial recovery up to 2023, 
increasing from 2.444 g C m⁻² yr⁻¹ to 3.264 g C 
m⁻² yr⁻¹, followed by a small decline in 2024. 
Zone VII increases strongly through 2023 and re-
mains high in 2024, whereas Zone VIII remains 
in the middle to upper range with a peak in 2023. 
These behaviors confirm that differences among 
zones are primarily governed by canopy density 
recorded by EVI and by moisture status record-
ed by LSWI, with additional modulation from 

interannual changes in photosynthetically active 
radiation and temperature. 

Interannual dynamics 2019–2024

At the ecosystem scale, both sites show rising 
GPP across the study period with a shared maxi-
mum in 2023 and a modest correction in 2024. 
The mean annual GPP for 2019–2024 is 3.591 g 
C m⁻² yr⁻¹ in Taman Nasional Bali Barat and 3.675 
g C m⁻² yr⁻¹ in Tahura Ngurah Rai. Taman Nasi-
onal Bali Barat increases by 7.4%, from 3.486 to 
3.744 g C m⁻² yr⁻¹. Tahura Ngurah Rai increases by 

Figure 5. Layout of the GPP sampling zones in Taman Nasional Bali Barat (A) and Tahura Ngurah Rai (B). 
These zones are used as the basis for comparing GPP time-series based on pixel values

Figure 6. Annual gross primary productivity (GPP) by sampling zone from 2019 to 2024. Zone V (highlighted) 
consistently shows significantly lower GPP values compared to all other zones, making it a high priority for 

targeted mangrove management and restoration
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11.0%, from 3.490 to 3.873 g C m⁻² yr⁻¹. Peak val-
ues occur in 2023 at 3.758 g C m⁻² yr⁻¹ for Taman 
Nasional Bali Barat and 3.996 g C m⁻² yr⁻¹ for Ta-
hura Ngurah Rai. These trajectories are displayed 
in Figure 7. The province-level signal shows a sim-
ilar pattern when the two sites are averaged, indi-
cating that the 2023 conditions were favourable for 
canopy photosynthesis, followed by slightly lower 
but still elevated values in 2024 relative to 2019. 

Linkage to blue-carbon function and 
management urgency

The observed increases in annual GPP indi-
cate greater assimilation of atmospheric carbon 
into mangrove biomass during 2019–2024. In the 
context of blue-carbon ecosystems, higher GPP is 
a necessary condition for strengthening the carbon 
sink, because it provides the photosynthetic input 
that supports biomass growth and organic matter 
accumulation. These results therefore carry strong 
management relevance. First, the positive trajecto-
ry implies that protection and targeted restoration 
can maintain or enhance productivity, particularly 
in interior zones with high fPARchl and favorable 
moisture. Second, zones that show lower means 
and higher variability, such as the area around 
the Suwung landfill, represent opportunities for 
focused interventions that stabilize water status 
and reduce spectral mixing with non-vegetated 
surfaces. Third, the shared peak in 2023 and the 
slight decline in 2024 underscore the sensitivity 

of productivity to interannual climate variability, 
reinforcing the need for continuous monitoring to 
secure gains under changing environmental con-
ditions. Read together, the spatial structure, the 
zonal contrasts, and the interannual rise highlight 
the urgent and crucial role of Bali’s mangroves in 
blue-carbon strategies for emission reduction and 
climate resilience at the provincial scale.

DISCUSSION

This study presents the first province-wide, 
annually resolved assessment of mangrove gross 
primary productivity in Bali using high-resolution 
Sentinel-2A observations for 2019 to 2024. The 
results show consistent increases in annual GPP 
at Taman Nasional Bali Barat and Tahura Ngurah 
Rai, peaking in 2023, with only a modest decline 
in 2024. Because GPP sets the upper bound for 
the blue-carbon sink, these gains indicate great-
er photosynthetic assimilation of atmospheric 
carbon during the study period and therefore 
strengthen the case for mangrove protection and 
targeted rehabilitation as part of Bali’s climate 
mitigation strategy. The spatial patterns reported 
in Figures 1 to 6 and the time-series trajectories in 
Figure 7 together demonstrate that interior, well-
managed stands maintain high fPARchl and favor-
able moisture conditions, while edge zones near 
mixed substrates and infrastructure show lower 
means and higher variability. This spatial contrast 

Figure 7. Mean gross primary productivity (GPP) of mangrove ecosystems in Bali Province, 2019 to 2024
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creates clear priorities for management: protect 
stable interior blocks to preserve high productiv-
ity and focus interventions on edge zones to im-
prove canopy continuity and water status.

Globally, mangroves are among the most 
productive coastal ecosystems and contribute 
substantially to blue-carbon fluxes (Franco et al., 
2025; Ouyang et al., 2024; Zhang et al., 2024). 
Reviews indicate that productivity varies with 
salinity, rainfall, tidal flooding, light, canopy age, 
nutrient availability, disturbance history, and geo-
morphic setting, and that global mangrove GPP 
has increased since 2001 with continued increas-
es likely under rising atmospheric CO₂ (Alongi, 
2025). Against this backdrop, Bali’s positive GPP 
trend aligns with international evidence that well-
protected or recovering mangroves can sustain or 
improve photosynthetic capacity. The 2023 maxi-
mum observed in both sites is consistent with years 
that combine adequate radiation with thermal and 
moisture regimes within mangrove physiological 
optima. The small decline in 2024 suggests sen-
sitivity to interannual climate variability, which 
underscores the value of continuous monitoring.

A central contribution of this work is the use 
of 10 m Sentinel-2A surface reflectance to derive 
annual GPP via a light-use-efficiency framework. 
Much of the earlier literature has relied on coarser 
products for regional GPP estimates. For exam-
ple, studies that use MODIS GPP at kilometre to 
500 m resolution can reveal provincial or national 
signals but cannot resolve the sharp gradients that 
characterize mangrove mosaics near channels, 
embankments, and mixed intertidal substrates 
(Menefee et al., 2023; Muñoz-Albiter et al., 2024; 
Wang et al., 2024; Zhang et al., 2023). Coarse 
pixels blend vegetation, water, and built surfaces, 
which suppresses peak values in dense stands and 
exaggerates variability at edges. By contrast, our 
Sentinel-2A approach captures fine-scale struc-
ture in fPARchl and LSWI, allowing robust dif-
ferentiation between interior and edge zones and 
producing zonal statistics that are stable where 
canopies are continuous and variable where 
spectral mixing occurs. This resolution advan-
tage matches recent advances in mangrove GPP 
modeling that integrate Sentinel-2 reflectance, re-
fined fAPAR estimation, and machine learning to 
quantify environmental drivers and detect spatial 
heterogeneity that coarse data miss (Zheng et al., 
2025; Zheng and Takeuchi, 2022).

Comparisons with work outside Indonesia 
help situate Bali’s findings. On Hainan Island, 

optimized ensembles combining Sentinel-2-de-
rived fAPAR with an MVP-LUE model reported 
increasing annual GPP and strong control of pro-
ductivity by fAPAR, with seasonal peaks during 
the transition from dry to rainy periods (Zheng et 
al., 2025). This seasonal sensitivity is consistent 
with our interannual signals in Figure 7, where 
favorable radiation and moisture conditions pro-
mote higher GPP. In northwestern Mexico, sea-
sonality associated with the North American Mon-
soon produced GPP maxima before the monsoon, 
while temperature and vapor pressure deficit be-
came stronger drivers during and after the mon-
soon (Muñoz-Albiter et al., 2024). These results 
echo the role of the temperature and water scalars 
in our model. They also point to the need for local 
measurements of vapor pressure deficit and inun-
dation timing to refine scalar behaviour in coastal 
settings. High-resolution retrievals are essential in 
mangroves because small hydrological shifts can 
create large productivity differences over tens of 
meters, a scale that coarse sensors cannot resolve. 
Studies that used high-resolution optical sensors or 
downscaled drivers have shown improved agree-
ment with flux observations and better attribution 
of environmental controls, further supporting the 
approach taken here (Lele et al., 2021).

Extreme events add another layer of variabil-
ity and risk to blue-carbon services. Tropical cy-
clones and storm surges can reduce photosynthet-
ic area and alter physiological rates, with recovery 
times that vary by community composition, soil 
conditions, tree size distributions, and distance to 
storm tracks and shorelines (Wu et al., 2023; Zou 
et al., 2025). Although Bali is less exposed to in-
tense cyclones than some subtropical islands, epi-
sodic storm surges and compound flooding events 
can still affect canopy condition and sediment 
dynamics. The shared peak in 2023 followed by 
a slight decline in 2024 could reflect interannual 
climate anomalies that affect radiation, humidity, 
and inundation frequency. Integrating tide-aware 
compositing and hydrodynamic indicators in fu-
ture remote-sensing workflows should improve 
attribution of such year-to-year changes.

From a blue-carbon perspective, the increases 
in GPP observed here are urgent and policy-rele-
vant (Wu et al., 2023; Zou et al., 2025). GPP pro-
vides the photosynthetic input to net ecosystem 
production, which, after accounting for respira-
tion and lateral exports, underpins long-term car-
bon storage in biomass and sediments (Alwis et 
al., 2025; Hurd et al., 2022; Lamont et al., 2020). 
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The spatial concentration of high GPP in inte-
rior zones implies that maintaining hydrological 
connectivity, minimizing edge disturbance, and 
preventing conversion around these blocks will 
sustain annual carbon assimilation. Conversely, 
lower and more variable GPP in edge zones near 
mixed land uses highlights where restoration can 
deliver immediate gains by reducing spectral 
mixing with non-vegetated surfaces, improving 
water management, and promoting canopy clo-
sure. Because Bali’s coastal development pres-
sures are ongoing, the demonstrated productivity 
gains are not guaranteed. They require continued 
protection and fine-scale management, especially 
where infrastructure and landfill activities inter-
act with mangrove margins.

The urgency of protecting these high-GPP 
ecosystems is therefore two-fold, extending be-
yond carbon mitigation to include critical climate 
adaptation. First, the high photosynthetic assimi-
lation (GPP) documented in this study is the pri-
mary mechanism for carbon sequestration. This 
function provides an essential, quantifiable coun-
terbalance to the significant regional greenhouse 
gas emissions linked to Bali’s vital tourism sec-
tor (Saifulloh, et al., 2025; Sunarta and Saifulloh, 
2022b, 2022a). Second, and of more immediate 
local importance, these mangrove stands func-
tion as indispensable natural infrastructure. Their 
complex root structures dissipate wave energy, 
providing a physical buffer against the coastal 
flooding that threatens the region (Trigunasih 
and Saifulloh, 2022). Furthermore, their ability 
to trap sediment and build soil (a process known 
as vertical accretion) is a critical natural defense 
against the dual threats of sea-level rise and the 
alarming rates of land subsidence (Saifulloh et 
al., 2025), the latter often exacerbated by ground-
water extraction in tourism-heavy areas. This 
multi-faceted crisis, driven by development and 
overtourism (Sunarta et al., 2025), highlights the 
non-negotiable value of preserving all green open 
spaces. The coastal mangroves, as demonstrated 
by their GPP, provide a direct carbon-sink and a 
physical resilience service, which is complement-
ed by urban terrestrial forests that offer parallel 
benefits (e.g., mitigating the urban heat island ef-
fect) (Sudarma et al., 2024; Sunarta et al., 2022). 
Therefore, protecting these ecosystems is a core 
strategy for mitigating the severe, interconnected 
environmental degradation facing the province.

This study has limitations that future work 
should address. Field validation of GPP in tidal 

mangroves remains scarce, eddy-covariance tow-
ers are uncommon, and partitioning net exchange 
into GPP and ecosystem respiration under tidal 
influence is still challenging. Light-use-efficiency 
parameters were held constant across years for 
comparability, yet site-level differences in species 
composition, nutrient status, and salinity may shift 
optimal efficiency. The temperature scalar uses 
MODIS land surface temperature as a proxy for 
canopy thermal conditions that can diverge from 
air or leaf temperature in some seasons, and the 
water scalar based on LSWI and its annual maxi-
mum can be affected by subpixel water, bright 
adjacency, and tide timing. Despite conservative 
cloud screening and compositing, residual artifacts 
and limited clear scenes in some months introduce 
additional uncertainty into annual integration.

Looking ahead, several practical steps can 
narrow these uncertainties and strengthen compa-
rability with field observations. The first is to in-
stall at least one flux tower in each ecosystem and 
apply tidal-aware partitioning to derive GPP from 
continuous net ecosystem exchange. The second 
is to conduct tide-synchronized field campaigns 
that pair leaf gas exchange, chlorophyll content, 
and leaf area index with high-resolution drone 
multispectral or hyperspectral imagery, creating 
a link from leaf physiology to canopy signals. 
The third is to integrate solar-induced chlorophyll 
fluorescence and lidar-derived canopy structure, 
where available, to refine estimates of fPAR_chl 
and light interception. The fourth is to incorporate 
salinity, water level, and porewater metrics so the 
environmental scalars represent hydrological con-
trols more explicitly than temperature and optical 
moisture alone. The fifth is to apply tide-aware 
compositing and adjacency correction in Senti-
nel-2 processing to reduce edge contamination in 
narrow coastal strips. Together, these focused im-
provements will reduce uncertainty and directly 
support the management priorities outlined in the 
Conclusion, namely protecting high-performing 
interior canopies and restoring vulnerable edges 
to sustain Bali’s blue-carbon benefits.

CONCLUSIONS

This study provides the first province-wide, 
annually resolved picture of mangrove gross pri-
mary productivity in Bali using Sentinel-2A for 
2019 to 2024. Productivity increased over time 
and peaked in 2023, with interior, well-managed 
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stands consistently higher than edge zones near 
mixed substrates. These patterns indicate a 
strengthening photosynthetic carbon uptake that 
supports Bali’s blue-carbon objectives and identi-
fies clear priorities for action: maintain protection 
of interior canopies and restore edges through im-
proved hydrology and canopy continuity.

The Sentinel-2A approach resolves fine-scale 
heterogeneity that coarser products cannot, mak-
ing the results directly useful for targeting man-
agement and for updating provincial inventories. 
Remaining uncertainty is mainly due to limited 
field validation of GPP in tidal forests. Future 
work should couple high-resolution monitoring 
with flux towers and tide-synchronized field mea-
surements to reduce uncertainty and to sustain the 
blue-carbon benefits of Bali’s mangroves.
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