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INTRODUCTION

Landslides are among the most frequent and 
destructive geological hazards in Indonesia, par-
ticularly in regions characterized by steep slopes, 
complex geomorphology, and high rainfall inten-
sity (Noviyanto et al., 2020; Shao et al., 2022). 
Slope failure results from the interaction of geo-
logical, geomorphological, hydrological, and an-
thropogenic factors when driving forces exceed 
the resisting strength of slope materials. Be-
yond their immediate role as geological hazards, 

landslides also represent major environmental 
disturbances that accelerate soil erosion, modify 
land cover patterns, disrupt hydrological process-
es, and contribute to long-term land degradation. 
Such events often lead to extensive damage to in-
frastructure and agricultural land, loss of human 
lives, and long-term socio-economic disruption 
(Keller, 2017; Sam et al., 2025). Consequently, 
reliable landslide susceptibility assessment is 
essential not only for disaster risk reduction but 
also as part of environmental monitoring systems 
supporting sustainable land-use planning (Galve 
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et al., 2014; Roccati et al., 2021). Advances in 
geographic information systems (GIS) and data-
driven modeling have substantially enhanced 
landslide susceptibility analysis and the capacity 
to monitor environmentally driven slope instabil-
ity at regional scales (Laode et al., 2025). Con-
ventional approaches, including weighted overlay 
and index-based methods, rely heavily on expert 
judgment and predefined weighting schemes, 
which may introduce subjectivity and limit their 
ability to represent complex, nonlinear interac-
tions among landslide conditioning factors. These 
limitations reduce their effectiveness as objective 
and repeatable tools for environmental monitor-
ing, particularly in heterogeneous tropical land-
scapes. In contrast, machine learning–based mod-
els provide a more flexible framework for cap-
turing multivariate and nonlinear relationships 
among topographic, geological, environmental, 
and anthropogenic variables (Haghighi et al., 
2021; Wang et al., 2023). Among these models, 
Random Forest has been widely adopted due to 
its robustness in handling high-dimensional data, 
resistance to overfitting, strong predictive perfor-
mance through ensemble learning, and its ability 
to quantify the relative importance of condition-
ing factors for environmental monitoring and ev-
idence-based decision support (Arif et al., 2025; 
Karurung et al., 2025; Salam et al., 2021).

The Tinggimoncong District in Gowa Regen-
cy, South Sulawesi, Indonesia, is characterized by 
complex terrain and high landslide susceptibility. 
Steep slopes, pronounced elevation variability, 
high annual rainfall, and intensive land-use ac-
tivities associated with agriculture and tourism 
development, particularly in the Malino high-
land area, collectively increase slope instability. 
These interacting natural and anthropogenic driv-
ers have transformed landslides into a recurrent 
environmental process contributing to ongoing 
land degradation and landscape change, making 
Tinggimoncong a critical area for environmental 
monitoring–oriented landslide susceptibility as-
sessment, especially under intense or prolonged 
rainfall conditions.

Previous landslide studies in Tinggimoncong 
and its surrounding areas have predominantly 
employed conventional susceptibility assessment 
methods, such as weighted overlay and the Storie 
Index. While these methods provide an initial de-
piction of landslide-prone zones, they are limited 
by subjective weighting schemes, limited capac-
ity to capture nonlinear factor interactions, and 

the absence of rigorous quantitative model vali-
dation. As a result, their contribution to long-term 
environmental monitoring and land degradation 
assessment remains limited. Although Random 
Forest–based landslide susceptibility assess-
ments have demonstrated strong performance in 
regions with complex geomorphological settings 
elsewhere (Chen et al., 2018; Dou et al., 2019; 
Sahin et al., 2020; Sun et al., 2020, 2021), their 
systematic application as part of an integrated en-
vironmental monitoring framework in the Tinggi-
moncong region remains lacking.

This gap underscores the need for a data-
driven, objective, and quantitatively validated 
landslide susceptibility assessment capable of ad-
dressing terrain complexity in Tinggimoncong. 
Accordingly, the primary objective of this study is 
to develop and evaluate a Random Forest–based 
landslide susceptibility model integrated with 
GIS-derived environmental conditioning factors 
in the Tinggimoncong highlands, South Sulawe-
si. Beyond producing a susceptibility map, this 
study aims to identify the dominant landslide-
controlling factors and to quantify their relative 
importance and interactions, thereby generating 
new scientific insight into the mechanisms gov-
erning environmentally driven slope instability in 
a tropical mountainous setting. The specific sci-
entific contribution lies in moving from subjec-
tive, index-based mapping toward an evidence-
based framework suitable for environmental 
monitoring and land degradation assessment. It is 
hypothesized that morphometric factors, particu-
larly slope gradient and elevation, combined with 
proximity to anthropogenic disturbances such as 
roads, exert a stronger control on landslide oc-
currence than lithological variability alone, and 
that the Random Forest model will demonstrate 
robust predictive performance validated through 
multiple quantitative metrics. The results are 
expected to provide a reproducible and reliable 
basis for integrating landslide susceptibility into 
environmental monitoring systems and sustain-
able land-use planning in Tinggimoncong and 
geomorphologically comparable regions.

MATERIAL AND METHODS

This study follows a systematic and repro-
ducible workflow integrating landslide inventory 
preparation, conditioning factor analysis, Ran-
dom Forest modeling, quantitative validation, 
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and spatial susceptibility mapping to support en-
vironmental monitoring of slope instability and 
land degradation. The overall technical workflow 
for landslide susceptibility assessment within an 
environmental monitoring framework is summa-
rized in Figure 1.

Study area

The study was conducted in the Tinggimon-
cong District, Gowa Regency, South Sulawesi, 
Indonesia, a mountainous region characterized by 
complex terrain and high landslide susceptibility 
(Figure 2). The area exhibits steep slopes, signifi-
cant elevation variability, and high annual rainfall. 
In addition, intensive land-use activities related to 
agriculture and tourism development, particularly 
in the Malino highlands, have altered natural slope 
conditions and increased terrain instability (Dariati 
et al., 2021). These interacting natural and anthro-
pogenic pressures have made landslides a recur-
rent environmental process contributing to ongo-
ing land degradation, making Tinggimoncong an 
appropriate case study for environmental monitor-
ing–oriented landslide susceptibility assessment in 
complex tropical environments.

Landslide inventory and dataset preparation

A landslide inventory was compiled by inte-
grating historical landslide records from Gowa 
Regency with visual interpretation of high-reso-
lution Google Earth imagery and systematic field 
verification. Landslide locations were initially 

identified from documented landslide occurrence 
histories provided by the Gowa Regency Disaster 
Management Agency (BPBD) and subsequently 
confirmed through geomorphological interpreta-
tion of satellite imagery, including the presence 
of head scarps, disrupted vegetation patterns, and 
debris accumulation. The spatial distribution of 
landslide and non-landslide inventory points, to-
gether with representative satellite imagery illus-
trating geomorphological evidence of landslide 
features, is presented in Figure 3. Field surveys 
were conducted to verify the location and extent 
of selected landslide sites, ensuring that only con-
firmed landslide events with clear geomorpholog-
ical evidence were included in the inventory. In 
total, 220 landslide sample points (label = 1) were 
established based on the convergence of historical 
records, image interpretation, and field validation, 
thereby ensuring the reliability of the landslide da-
taset for environmental monitoring purposes. 

An equal number of 220 non-landslide sam-
ple points (label = 0) were selected from areas 
with no recorded history of landslides and no 
observable geomorphological evidence of slope 
failure on satellite imagery or during field verifi-
cation. Non-landslide points were sampled from 
geomorphologically stable zones and were spa-
tially constrained to maintain a sufficient distance 
from mapped landslide locations, thereby reduc-
ing spatial ambiguity and potential autocorrela-
tion effects. Figure 3 also provides satellite im-
agery examples from selected landslide locations, 
highlighting diagnostic geomorphological indica-
tors such as head scarps, displaced material, and 

Figure 1. Research workflow for landslide susceptibility assessment (modified from Li et al., 2024)
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Figure 2. Location of the study area

Table 1. Landslide conditioning factors used in this study
Category Conditioning factor Description Data source Derivation method/Tools

Topography

Slope gradient Steepness of terrain
DEMNAS (Badan 

Informasi Geospasial, 
Indonesia)

Derived from DEM using 
Slope function in ArcGIS 10.8 

(Horn algorithm)

Elevation Absolute height above 
sea level

DEMNAS (Badan 
Informasi Geospasial, 

Indonesia)

Directly extracted from DEM 
raster

Aspect Slope orientation
DEMNAS (Badan 

Informasi Geospasial, 
Indonesia)

Derived from DEM using 
Aspect function in ArcGIS 10.8

Plan curvature Surface curvature 
perpendicular to slope

DEMNAS (Badan 
Informasi Geospasial, 

Indonesia)

Derived from DEM using 
Curvature tool (plan curvature 

option)

Profile curvature Curvature parallel to 
slope direction

DEMNAS (Badan 
Informasi Geospasial, 

Indonesia)

Derived from DEM using 
Curvature tool (profile 

curvature option)

Topographic 
position index 

(TPI)

Relative position 
within terrain

DEMNAS (Badan 
Informasi Geospasial, 

Indonesia)

Calculated as the difference 
between cell elevation 

and mean elevation of a 
surrounding neighborhood 

(TPI), using raster 
neighborhood analysis

Topographic 
wetness index 

(TWI)

Potential soil moisture 
accumulation

DEMNAS (Badan 
Informasi Geospasial, 

Indonesia)

Calculated as TWI = ln (As 
/ tanβ), where As is specific 

catchment area and β is 
slope angle, derived using 

flow accumulation and slope 
rasters

Geology and 
soil

Lithology Bedrock type
Geological Map (ESDM 
– Geological Agency of 

Indonesia)

Vector geology map 
reclassified and converted to 

raster format

Soil type Engineering soil 
characteristics FAO Soil Map

Soil units extracted and 
reclassified based on 

engineering soil properties

Land cover Land use/land 
cover

Vegetation and 
anthropogenic cover

KLHK (Ministry of 
Environment and Forestry, 

Indonesia)

Land use classes reclassified 
into dominant land cover 

categories

Distance-
based

Distance to 
streams

Proximity to fluvial 
erosion zones

RBI (Badan Informasi 
Geospasial, Indonesia)

Euclidean distance calculated 
from stream network using 

Distance tool

Distance to roads
Proximity to 

anthropogenic 
disturbances

RBI (Badan Informasi 
Geospasial, Indonesia)

Euclidean distance calculated 
from road network using 

Distance tool
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disturbed vegetation patterns used to validate 
landslide occurrence. The resulting balanced da-
taset, comprising 440 sample points, provided 
equal representation of landslide and non-land-
slide classes and formed a robust basis for Ran-
dom Forest model training, validation, and re-
peatable landslide susceptibility assessment.

Landslide conditioning factors

Twelve landslide conditioning factors were 
selected to represent the combined influence of 
topography, geology, hydrology, land cover, and 
human activities on slope stability and associated 

environmental change processes (see Table 1). 
These factors capture the spatial variability of ter-
rain morphology, subsurface conditions, surface 
processes, and anthropogenic disturbances that con-
trol landslide occurrence and landscape degradation 
in the study area. The spatial distribution of the se-
lected conditioning factors is illustrated in Figure 4 
and Figure 5. All raster layers were standardized to 
a spatial resolution of 30 m and projected to UTM 
Zone 50S (WGS84) to ensure spatial consistency. 
Factor values were extracted at landslide and non-
landslide sample locations to construct a multivari-
ate dataset suitable for environmental monitoring–
oriented Random Forest modeling.

Figure 3. Spatial distribution of landslide and non-landslide inventory points in the research area. 
Landslide locations are shown as red points and non-landslide locations as blue points. 

(a–d) present representative Google Earth satellite imagery locations illustrating geomorphological 
evidence of landslide occurrence, including head scarps, debris accumulation, and disturbed vegetation 

patterns used for inventory validation
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Figure 4. Landslide conditioning factors used in this study: (a) slope aspect, (b) elevation, (c) lithology, 
(d) distance to road, (e) profile curvature, (f) plan curvature

Random forest modeling

Landslide susceptibility modeling was per-
formed using the RF algorithm, an ensemble learn-
ing method that constructs multiple decision trees 
based on bootstrapped samples and randomly se-
lected subsets of predictor variables. The final pre-
diction is obtained by aggregating the outputs of 
all trees, which enhances predictive stability and 
reduces overfitting in environmental monitoring 
applications involving complex multivariate data. 
Model implementation was conducted using the 
Python programming language with the Scikit-
learn library. The dataset was divided into train-
ing (80%) and testing (20%) subsets using strati-
fied sampling to preserve class distribution. Hy-
perparameter optimization was performed using 

RandomizedSearchCV combined with five-fold 
cross-validation. Key hyperparameters optimized 
in this study include the number of trees (n_estima-
tors), maximum tree depth (max_depth), and class 
weights to account for potential class imbalance in 
monitoring landslide-prone environments.

Model evaluation

Model performance was evaluated using 
multiple quantitative metrics to comprehensively 
assess predictive accuracy and classification re-
liability for environmental monitoring and de-
cision-support purposes. These metrics include 
accuracy, precision, recall, F1-score, the area 
under the receiver operating characteristic curve 
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(ROC–AUC), and the precision–recall area under 
the curve (PR–AUC) (Krkač et al., 2017; Lago-
marsino et al., 2017; Miao and Zhu, 2022; Park 
et al., 2019). The confusion matrix was generated 
by comparing the predicted class labels obtained 
from the trained Random Forest model with the 
observed landslide and non-landslide labels in the 
independent testing dataset using the confusion_
matrix function implemented in the scikit-learn 
library. The primary performance metrics were 
calculated as follows (Agboola et al., 2024; Nu-
groho et al., 2025):

	

 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹 (1) 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 (2) 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 (3) 

F1 = 2 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (4) 

 
 

	 (1)

	

 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹 (1) 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 (2) 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 (3) 

F1 = 2 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (4) 

 
 

	 (2)

	

 

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹 (1) 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 (2) 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 (3) 

F1 = 2 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (4) 
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Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹 (1) 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 (2) 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 (3) 

F1 = 2 ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (4) 

 
 

	 (4)

where: TP – true positive, TN – true negative, FP 
– false positive, and FN – false negative. 

ROC–AUC was used to evaluate the discrim-
inative capability of the model across classifica-
tion thresholds, while PR–AUC was employed 
to assess model performance under potential 
class imbalance. The ROC curve was construct-
ed by plotting the true positive rate against the 
false positive rate at various threshold settings, 
and the AUC was used to quantify overall dis-
crimination performance. All modeling and 

Figure 5. Landslide conditioning factors used in this study: (g) slope, (h) topographic wetness index (TWI), 
(i) distance to stream, (j) topographic position index (TPI), (k) soil type, and (l) land use/land cover
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performance evaluation were conducted using 
Python in the scikit-learn library.

Feature importance

After evaluating the model using the RF mod-
el obtained, the feature importance was quantified 
by calculating the total reduction in node impurity 
attributed to each conditioning factor, which was 
then averaged over all trees in the ensemble. This 
can explain why the model made those decisions 
by identifying the most influential variables in the 
model. The higher mean decrease value indicates 
that the variable has a more significant role in the 
classification process in the dataset (Li, 2024).

Feature importance values were extracted 
directly from the trained Random Forest model 
using the feature_importances attribute of the 
scikit-learn implementation, which represents 
the normalized mean decrease in Gini impurity 
contributed by each conditioning factor across all 
decision trees in the ensemble.

Landslide susceptibility mapping

The probabilistic output of the Random Forest 
model was exported in raster format (GeoTIFF) 
to generate the landslide susceptibility map. Sus-
ceptibility values were classified into two levels 
using the Equal Interval method: low (0.0–0.5 
and high (0.5–1.0). All spatial processing and vi-
sualization were performed using ArcGIS 10.8.

RESULTS AND DISCUSSION

Relationship between landslide conditioning 
factors and landslide occurrence

The relationship between landslide condition-
ing factors and historical landslide occurrence 
was examined using feature importance derived 
from the RF model. Model performance in Table 
2 was evaluated using a confusion-matrix-based 
approach that illustrated in Figure 6. Accuracy, 

precision, recall, and F1-score were computed us-
ing formula (1) to (4).

The results indicate that slope aspect is the 
most influential factor controlling landslide sus-
ceptibility in the Tinggimoncong District, fol-
lowed by elevation and slope gradient (see Table 
3 and Figure 7). The high importance of slope 
aspect suggests that slope orientation strongly 
affects hydrological and microclimatic condi-
tions, particularly rainfall exposure, soil mois-
ture retention, and vegetation distribution, which 
collectively influence slope stability and related 
environmental processes (Capitani et al., 2013; 
Cellek, 2022; Zhu et al., 2025). Elevation and 
slope gradient further emphasize the dominant 
role of terrain morphology, as steeper and higher 
areas are more susceptible to gravitational failure 
under intense rainfall conditions.

Anthropogenic influence is clearly reflected 
by the relatively high importance of distance to 
road. Road construction and associated slope 
cutting, excavation, and modification of natural 
drainage patterns can significantly reduce slope 
stability, particularly in mountainous environ-
ments. This finding highlights the critical role 
of infrastructure development in amplifying 

Table 2. Performance metrics of the random forest model

RF model
True condition

Summation
Landslide (L) Non-landslide (NL)

Prediction 
condition

Landslide (L) 38 (TP) 3 (FP) Precision: 0.927

Non-landslide (NL) 2 (FN) 38 (TN) Precision: 0.950

Summation Recall: 0.950 Recall: 0.927 Accuracy: 0.938

Figure 6. Confusion matrix for landslide and non-
landslide classes
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landslide susceptibility in the study area. Land 
use also shows a notable contribution, indicating 
that agricultural expansion and land-cover modi-
fication contribute to surface instability through 
vegetation removal and soil disturbance.

Geomorphometric indices, including the 
topographic position index (TPI), profile curva-
ture, and plan curvature, exhibit moderate im-
portance, reflecting the influence of local terrain 
configuration on water convergence and stress 
redistribution along slopes. Hydrological factors 
such as distance to stream and the topographic 
wetness index (TWI) show comparatively low-
er importance but still contribute to landslide 

initiation by enhancing pore-water pressure and 
reducing soil shear strength at localized scales. 
Soil type and lithology display lower rela-
tive importance, suggesting that while material 
properties affect slope behavior, landslide occur-
rence in Tinggimoncong is primarily controlled 
by topographic and anthropogenic factors rather 
than lithological variability alone.

Overall, the feature importance analysis re-
veals that landslide occurrence in the study area is 
governed by a combination of dominant morpho-
metric controls and significant human-induced 
disturbances, with hydrological and geological 
factors acting as secondary modifier. 

Model performance assessment and 
validation

The predictive performance of the Random 
Forest model was evaluated using multiple quan-
titative metrics to assess classification accuracy, 
robustness, and generalization capability for envi-
ronmental monitoring and decision-support appli-
cations. Model performance statistics are reported 
in Table 2, while classification outcomes are illus-
trated by the confusion matrix shown in Figure 6.

The RF model demonstrates excellent pre-
dictive performance, achieving a high area under 
the curve (AUC) value of 0.971 (Figure 8a) and 
an average precision (PR–AUC) of 0.956 (Fig-
ure 8b), indicating strong discriminative capabil-
ity between landslide and non-landslide classes in 

Table 3. Feature importance of conditioning factors 
derived from the random forest model

No Conditioning factor Feature importance

1 Slope aspect 0.1761

2 Elevation 0.1515

3 Slope gradient 0.1300

4 Distance to road 0.0780

5 TPI 0.0778

6 Profile curvature 0.0700

7 Lithology 0.0658

8 Plan curvature 0.0600

9 Land use 0.0562

10 Distance to stream 0.0486

11 TWI 0.0446

12 Soil type 0.0413

Figure 7. Feature importance of landslide conditioning factors
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monitoring environmentally driven slope instabil-
ity. The overall accuracy reaches approximately 
0.95, and the F1-score of 0.95 confirms a well-
balanced trade-off between precision and recall. 
These results indicate that the model is able to 
identify landslide-prone areas with a low rate of 
misclassification relevant for reliable environmen-
tal monitoring. Analysis of the confusion matrix 
reveals that the model correctly classified 38 land-
slide locations and 38 non-landslide locations, with 
only a small number of misclassifications. The low 
number of false negatives is particularly important 
for environmental monitoring and risk-informed 
land management, as it reduces the likelihood of 
overlooking environmentally vulnerable zones.

The strong balance between precision and re-
call demonstrates that the RF model generalizes 
well to unseen data and is not biased toward ei-
ther class. These findings confirm the suitability 
of Random Forest for modeling landslide suscep-
tibility as part of environmental monitoring sys-
tems in complex tropical terrain, where nonlinear 
relationships and interactions among environ-
mental variables are common.

Spatial analysis of landslide susceptibility and 
land degradation implications

The spatial distribution of landslide suscep-
tibility derived from the Random Forest model is 
presented in Figure 9, which illustrates continuous 
probabilistic susceptibility values ranging from 
0.00 to 1.00 across the Tinggimoncong District. 
This probabilistic map represents the direct output 
of the model and captures spatial variations in the 

likelihood of landslide occurrence as an indicator of 
environmental instability. Areas with high probabi-
listic values are predominantly concentrated in the 
eastern, northern, and southern parts of the study 
area. These zones are characterized by steep slopes, 
higher elevations, and intensive land-use activities, 
particularly along road corridors and cultivated 
hillslopes. The spatial concentration of high-prob-
ability values in these regions reflects the combined 
influence of terrain morphology and anthropogenic 
disturbances on slope instability that drive ongoing 
land degradation processes, consistent with previ-
ous studies (Akinci et al., 2020; Kim et al., 2018; 
Liu et al., 2022). In contrast, areas with low proba-
bilistic values are mainly distributed in the western 
and southeastern parts of the district, where gentler 
terrain and relatively stable land cover prevail indi-
cating lower environmental stress.

For decision-support purposes, the probabilis-
tic susceptibility map was further reclassified into 
two susceptibility levels; low and high, as illus-
trated in Figure 10. The classified susceptibility 
map clearly delineates zones with elevated land-
slide potential and provides a simplified repre-
sentation suitable for environmental monitoring, 
land degradation assessment, and spatial plan-
ning. The high-susceptibility class corresponds 
spatially with areas experiencing recurrent slope 
failures and intensive land modification, indicat-
ing zones of active land degradation. In these ar-
eas, repeated landslide events contribute to accel-
erated soil erosion, vegetation loss, and long-term 
deterioration of land productivity. Conversely, 
low-susceptibility zones generally coincide with 
more stable geomorphological conditions and 

Figure 8. (a) Receiver operating characteristic (ROC) curve showing the trade-off between true positive rate and 
false positive rate, with an area under the curve (AUC) of 0.971; (b) precision–recall (PR) curve illustrating the 

relationship between precision and recall, with an average precision (PR–AUC) of 0.956
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Figure 9. Probabilistic landslide susceptibility map of the Tinggimoncong District, south Sulawesi, Indonesia. 
The map shows continuous landslide susceptibility values ranging from 0.00 to 1.00 derived from the Random 

Forest model, representing the spatial probability of landslide occurrence across the study area

lower levels of human disturbance, reflecting re-
duced landslide risk and limited land degradation.

The strong spatial consistency between the 
probabilistic and classified susceptibility maps 
demonstrates the robustness of the Random Forest 
model in capturing landslide-prone environments 

in complex terrain. Together, these outputs pro-
vide an environmental monitoring framework 
for understanding landslide processes and their 
contribution to land degradation, supporting data-
driven land management and sustainable spatial 
planning in the Tinggimoncong highlands.

Figure 10. Classified landslide susceptibility map of the Tinggimoncong District, south Sulawesi, Indonesia. 
The probabilistic susceptibility values were reclassified into two classes; low and high susceptibility to support 
landslide hazard interpretation, land degradation assessment, and decision-making for disaster risk mitigation 

and spatial planning
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CONCLUSIONS 

This study successfully applied the RF al-
gorithm to assess landslide susceptibility in the 
Tinggimoncong District, Gowa Regency, South 
Sulawesi, achieving high predictive performance 
and model stability (AUC = 0.971; F1-score = 
0.95). Within an environmental monitoring con-
text, the RF approach proved effective in capturing 
nonlinear relationships among spatial variables 
and produced statistically and spatially consistent 
susceptibility patterns that reflect spatial varia-
tions in environmental instability in a complex 
tropical terrain. One of the main strengths of the 
RF model lies in its ability to process multivariate 
datasets with heterogeneous variable types with-
out requiring linearity assumptions, while simul-
taneously providing feature importance informa-
tion relevant for interpreting key environmental 
controls. The results indicate that morphometric 
factors, particularly slope aspect, slope gradient, 
and elevation, together with anthropogenic influ-
ences such as proximity to road networks, are the 
dominant controls on landslide susceptibility and 
associated land degradation processes in the study 
area. These findings highlight the critical role of 
both terrain morphology and human activities in 
shaping environmentally vulnerable landscapes.

Despite the strong performance of the model, 
several limitations should be acknowledged. The 
landslide inventory used in this study is limited 
in terms of temporal coverage and the number 
of documented landslide events. In addition, the 
model does not incorporate dynamic triggering 
factors such as daily rainfall intensity or soil mois-
ture conditions, which are important variables for 
continuous environmental monitoring of slope 
processes. Future research should integrate time-
dependent variables and multi-temporal landslide 
inventories to strengthen the applicability of land-
slide susceptibility modeling within long-term 
environmental monitoring frameworks.

The findings of this study provide a robust 
scientific basis for environmental monitoring–in-
formed land management and spatial planning in 
the Tinggimoncong highlands. The probabilistic 
and classified susceptibility maps can support lo-
cal authorities, including disaster management 
and regional planning agencies, as spatial indi-
cators for monitoring environmental stress and 
land degradation, in identifying high-risk zones 
and prioritizing mitigation measures. Moreover, 
the proposed RF-based framework is transferable 

and can be readily applied to other regions with 
similar geomorphological and geological set-
tings, offering a reliable and efficient machine 
learning approach for environmental monitoring 
of landslide-prone landscapes and land degrada-
tion management.
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