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ABSTRACT

Landslides are among the most frequent and destructive geological hazards in Indonesia, particularly in mountain-
ous regions with steep slopes, complex geomorphology, and high rainfall. In addition to their role as natural haz-
ards, landslides act as significant drivers of environmental disturbance and land degradation, highlighting the need
for reliable susceptibility assessment as part of environmental monitoring and sustainable land-use planning. This
study applies a random forest (RF) machine learning model integrated with geographic information systems (GIS)
to support environmental monitoring of landslide-prone landscapes in the Tinggimoncong District, Gowa Regen-
cy, South Sulawesi, Indonesia. A balanced dataset of 440 sample points (220 landslide and 220 non-landslide loca-
tions) was constructed using high-resolution imagery, field verification, and official records, and combined with
twelve conditioning factors representing topography, geology, hydrology, land cover, and human activities. Model
performance was evaluated using accuracy, F1-score, ROC-AUC, and PR-AUC. The RF model demonstrated
high predictive performance (AUC = 0.971; Fl-score = 0.95). Feature importance analysis indicates that slope
aspect, elevation, slope gradient, and distance to roads are the dominant factors controlling environmentally driven
slope instability. The resulting probabilistic and classified susceptibility maps identify zones of high environmental
instability that spatially correspond with areas prone to land degradation due to recurrent landslides. The proposed
RF-based framework provides a robust basis for environmental monitoring, land degradation management, and
sustainable spatial planning in complex tropical terrains.

Keywords: environmental monitoring, landslide susceptibility, random forest, geographic information systems,
land degradation, tropical mountainous environment.

INTRODUCTION landslides also represent major environmental
disturbances that accelerate soil erosion, modify

Landslides are among the most frequent and  land cover patterns, disrupt hydrological process-

destructive geological hazards in Indonesia, par-
ticularly in regions characterized by steep slopes,
complex geomorphology, and high rainfall inten-
sity (Noviyanto et al., 2020; Shao et al., 2022).
Slope failure results from the interaction of geo-
logical, geomorphological, hydrological, and an-
thropogenic factors when driving forces exceed
the resisting strength of slope materials. Be-
yond their immediate role as geological hazards,
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es, and contribute to long-term land degradation.
Such events often lead to extensive damage to in-
frastructure and agricultural land, loss of human
lives, and long-term socio-economic disruption
(Keller, 2017; Sam et al., 2025). Consequently,
reliable landslide susceptibility assessment is
essential not only for disaster risk reduction but
also as part of environmental monitoring systems
supporting sustainable land-use planning (Galve
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et al., 2014; Roccati et al., 2021). Advances in
geographic information systems (GIS) and data-
driven modeling have substantially enhanced
landslide susceptibility analysis and the capacity
to monitor environmentally driven slope instabil-
ity at regional scales (Laode et al., 2025). Con-
ventional approaches, including weighted overlay
and index-based methods, rely heavily on expert
judgment and predefined weighting schemes,
which may introduce subjectivity and limit their
ability to represent complex, nonlinear interac-
tions among landslide conditioning factors. These
limitations reduce their effectiveness as objective
and repeatable tools for environmental monitor-
ing, particularly in heterogeneous tropical land-
scapes. In contrast, machine learning—based mod-
els provide a more flexible framework for cap-
turing multivariate and nonlinear relationships
among topographic, geological, environmental,
and anthropogenic variables (Haghighi et al.,
2021; Wang et al., 2023). Among these models,
Random Forest has been widely adopted due to
its robustness in handling high-dimensional data,
resistance to overfitting, strong predictive perfor-
mance through ensemble learning, and its ability
to quantify the relative importance of condition-
ing factors for environmental monitoring and ev-
idence-based decision support (Arif et al., 2025;
Karurung et al., 2025; Salam et al., 2021).

The Tinggimoncong District in Gowa Regen-
cy, South Sulawesi, Indonesia, is characterized by
complex terrain and high landslide susceptibility.
Steep slopes, pronounced elevation variability,
high annual rainfall, and intensive land-use ac-
tivities associated with agriculture and tourism
development, particularly in the Malino high-
land area, collectively increase slope instability.
These interacting natural and anthropogenic driv-
ers have transformed landslides into a recurrent
environmental process contributing to ongoing
land degradation and landscape change, making
Tinggimoncong a critical area for environmental
monitoring—oriented landslide susceptibility as-
sessment, especially under intense or prolonged
rainfall conditions.

Previous landslide studies in Tinggimoncong
and its surrounding areas have predominantly
employed conventional susceptibility assessment
methods, such as weighted overlay and the Storie
Index. While these methods provide an initial de-
piction of landslide-prone zones, they are limited
by subjective weighting schemes, limited capac-
ity to capture nonlinear factor interactions, and

the absence of rigorous quantitative model vali-
dation. As a result, their contribution to long-term
environmental monitoring and land degradation
assessment remains limited. Although Random
Forest-based landslide susceptibility assess-
ments have demonstrated strong performance in
regions with complex geomorphological settings
elsewhere (Chen et al., 2018; Dou et al., 2019;
Sahin et al., 2020; Sun et al., 2020, 2021), their
systematic application as part of an integrated en-
vironmental monitoring framework in the Tinggi-
moncong region remains lacking.

This gap underscores the need for a data-
driven, objective, and quantitatively validated
landslide susceptibility assessment capable of ad-
dressing terrain complexity in Tinggimoncong.
Accordingly, the primary objective of this study is
to develop and evaluate a Random Forest-based
landslide susceptibility model integrated with
GIS-derived environmental conditioning factors
in the Tinggimoncong highlands, South Sulawe-
si. Beyond producing a susceptibility map, this
study aims to identify the dominant landslide-
controlling factors and to quantify their relative
importance and interactions, thereby generating
new scientific insight into the mechanisms gov-
erning environmentally driven slope instability in
a tropical mountainous setting. The specific sci-
entific contribution lies in moving from subjec-
tive, index-based mapping toward an evidence-
based framework suitable for environmental
monitoring and land degradation assessment. It is
hypothesized that morphometric factors, particu-
larly slope gradient and elevation, combined with
proximity to anthropogenic disturbances such as
roads, exert a stronger control on landslide oc-
currence than lithological variability alone, and
that the Random Forest model will demonstrate
robust predictive performance validated through
multiple quantitative metrics. The results are
expected to provide a reproducible and reliable
basis for integrating landslide susceptibility into
environmental monitoring systems and sustain-
able land-use planning in Tinggimoncong and
geomorphologically comparable regions.

MATERIAL AND METHODS

This study follows a systematic and repro-
ducible workflow integrating landslide inventory
preparation, conditioning factor analysis, Ran-
dom Forest modeling, quantitative validation,
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and spatial susceptibility mapping to support en-
vironmental monitoring of slope instability and
land degradation. The overall technical workflow
for landslide susceptibility assessment within an
environmental monitoring framework is summa-
rized in Figure 1.

Study area

The study was conducted in the Tinggimon-
cong District, Gowa Regency, South Sulawesi,
Indonesia, a mountainous region characterized by
complex terrain and high landslide susceptibility
(Figure 2). The area exhibits steep slopes, signifi-
cant elevation variability, and high annual rainfall.
In addition, intensive land-use activities related to
agriculture and tourism development, particularly
in the Malino highlands, have altered natural slope
conditions and increased terrain instability (Dariati
et al., 2021). These interacting natural and anthro-
pogenic pressures have made landslides a recur-
rent environmental process contributing to ongo-
ing land degradation, making Tinggimoncong an
appropriate case study for environmental monitor-
ing—oriented landslide susceptibility assessment in
complex tropical environments.

Landslide inventory and dataset preparation

A landslide inventory was compiled by inte-
grating historical landslide records from Gowa
Regency with visual interpretation of high-reso-
lution Google Earth imagery and systematic field
verification. Landslide locations were initially

identified from documented landslide occurrence
histories provided by the Gowa Regency Disaster
Management Agency (BPBD) and subsequently
confirmed through geomorphological interpreta-
tion of satellite imagery, including the presence
of head scarps, disrupted vegetation patterns, and
debris accumulation. The spatial distribution of
landslide and non-landslide inventory points, to-
gether with representative satellite imagery illus-
trating geomorphological evidence of landslide
features, is presented in Figure 3. Field surveys
were conducted to verify the location and extent
of selected landslide sites, ensuring that only con-
firmed landslide events with clear geomorpholog-
ical evidence were included in the inventory. In
total, 220 landslide sample points (label = 1) were
established based on the convergence of historical
records, image interpretation, and field validation,
thereby ensuring the reliability of the landslide da-
taset for environmental monitoring purposes.

An equal number of 220 non-landslide sam-
ple points (label = 0) were selected from areas
with no recorded history of landslides and no
observable geomorphological evidence of slope
failure on satellite imagery or during field verifi-
cation. Non-landslide points were sampled from
geomorphologically stable zones and were spa-
tially constrained to maintain a sufficient distance
from mapped landslide locations, thereby reduc-
ing spatial ambiguity and potential autocorrela-
tion effects. Figure 3 also provides satellite im-
agery examples from selected landslide locations,
highlighting diagnostic geomorphological indica-
tors such as head scarps, displaced material, and
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Figure 2. Location of the study area

Table 1. Landslide conditioning factors used in this study

Distance to roads

anthropogenic
disturbances

RBI (Badan Informasi
Geospasial, Indonesia)

Category Conditioning factor Description Data source Derivation method/Tools
DEMNAS (Badan Derived from DEM using
Slope gradient Steepness of terrain Informasi Geospasial, Slope function in ArcGIS 10.8
Indonesia) (Horn algorithm)
. Absolute height above DEMNAS (Bada’.‘ Directly extracted from DEM
Elevation Informasi Geospasial,
sea level . raster
Indonesia)
Aspect Slope orientation Infli))ll'zrr':/zla'\slﬁée(c?: daasri]al Derived from DEM using
P P SP ’ Aspect function in ArcGIS 10.8
Indonesia)
DEMNAS (Badan Derived from DEM using
Surface curvature . .
Plan curvature : Informasi Geospasial, Curvature tool (plan curvature
perpendicular to slope . .
Indonesia) option)
Curvature parallel to DEMNAS (Badan Derived from DEM using
Topography Profile curvature para Informasi Geospasial, Curvature tool (profile
slope direction . ;
Indonesia) curvature option)
Calculated as the difference
Topographic . - DEMNAS (Badan between cell ele_vatlon
ISR Relative position . . and mean elevation of a
position index o . Informasi Geospasial, : .
within terrain . surrounding neighborhood
(TPI) Indonesia) )
(TPI), using raster
neighborhood analysis
Calculated as TWI = In (As
. / tanB), where As is specific
Topographic . . . DEMNAS (Badan ;
) Potential soil moisture . . catchment area and B is
wetness index . Informasi Geospasial, ) .
accumulation . slope angle, derived using
(TWI) Indonesia) .
flow accumulation and slope
rasters
Geological Map (ESDM Vector geology map
Lithology Bedrock type — Geological Agency of reclassified and converted to
Geology and Indonesia) raster format
soil Engineering soil Soil units extracted and
Soil type 9 9 FAO Soil Map reclassified based on
characteristics . : . )
engineering soil properties
Land use/land Vegetation and .KLHK (Ministry of Lapd use c!asses reclassified
Land cover . Environment and Forestry, into dominant land cover
cover anthropogenic cover : -
Indonesia) categories
Distance to Proximity to fluvial RBI (Badan Informasi Euclidean distance calculgted
. . ) from stream network using
. streams erosion zones Geospasial, Indonesia) .
Distance- Distance tool
based Proximity to Euclidean distance calculated

from road network using
Distance tool
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Figure 3. Spatial distribution of landslide and non-landslide inventory points in the research area.
Landslide locations are shown as red points and non-landslide locations as blue points.

(a—d) present representative Google Earth satellite

imagery locations illustrating geomorphological

evidence of landslide occurrence, including head scarps, debris accumulation, and disturbed vegetation
patterns used for inventory validation

disturbed vegetation patterns used to validate
landslide occurrence. The resulting balanced da-
taset, comprising 440 sample points, provided
equal representation of landslide and non-land-
slide classes and formed a robust basis for Ran-
dom Forest model training, validation, and re-
peatable landslide susceptibility assessment.

Landslide conditioning factors

Twelve landslide conditioning factors were
selected to represent the combined influence of
topography, geology, hydrology, land cover, and
human activities on slope stability and associated
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environmental change processes (see Table 1).
These factors capture the spatial variability of ter-
rain morphology, subsurface conditions, surface
processes, and anthropogenic disturbances that con-
trol landslide occurrence and landscape degradation
in the study area. The spatial distribution of the se-
lected conditioning factors is illustrated in Figure 4
and Figure 5. All raster layers were standardized to
a spatial resolution of 30 m and projected to UTM
Zone 50S (WGS84) to ensure spatial consistency.
Factor values were extracted at landslide and non-
landslide sample locations to construct a multivari-
ate dataset suitable for environmental monitoring—
oriented Random Forest modeling.
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Figure 4. Landslide conditioning factors used in this study: (a) slope aspect, (b) elevation, (c) lithology,
(d) distance to road, (e) profile curvature, (f) plan curvature

Random forest modeling

Landslide susceptibility modeling was per-
formed using the RF algorithm, an ensemble learn-
ing method that constructs multiple decision trees
based on bootstrapped samples and randomly se-
lected subsets of predictor variables. The final pre-
diction is obtained by aggregating the outputs of
all trees, which enhances predictive stability and
reduces overfitting in environmental monitoring
applications involving complex multivariate data.
Model implementation was conducted using the
Python programming language with the Scikit-
learn library. The dataset was divided into train-
ing (80%) and testing (20%) subsets using strati-
fied sampling to preserve class distribution. Hy-
perparameter optimization was performed using

RandomizedSearchCV combined with five-fold
cross-validation. Key hyperparameters optimized
in this study include the number of trees (n_estima-
tors), maximum tree depth (max_depth), and class
weights to account for potential class imbalance in
monitoring landslide-prone environments.

Model evaluation

Model performance was evaluated using
multiple quantitative metrics to comprehensively
assess predictive accuracy and classification re-
liability for environmental monitoring and de-
cision-support purposes. These metrics include
accuracy, precision, recall, Fl-score, the area
under the receiver operating characteristic curve
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Figure 5. Landslide conditioning factors used in this study: (g) slope, (h) topographic wetness index (TWI),
(1) distance to stream, (j) topographic position index (TPI), (k) soil type, and (1) land use/land cover

(ROC-AUC), and the precision—recall area under
the curve (PR-AUC) (Krka¢ et al., 2017; Lago-
marsino et al., 2017; Miao and Zhu, 2022; Park
et al., 2019). The confusion matrix was generated
by comparing the predicted class labels obtained
from the trained Random Forest model with the
observed landslide and non-landslide labels in the
independent testing dataset using the confusion
matrix function implemented in the scikit-learn
library. The primary performance metrics were
calculated as follows (Agboola et al., 2024; Nu-
groho et al., 2025):

TP+TN

Accuracy = —————
Y T TP+TN+FP+FN (1)
TP
Precision = ——
TP+FP (2)
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TP
Recall = PN 3)
Precision X Recall
Fl=2x 22222 (4)
Precision + Recall

where: TP — true positive, TN — true negative, FP
— false positive, and FN — false negative.

ROC-AUC was used to evaluate the discrim-
inative capability of the model across classifica-
tion thresholds, while PR-AUC was employed
to assess model performance under potential
class imbalance. The ROC curve was construct-
ed by plotting the true positive rate against the
false positive rate at various threshold settings,
and the AUC was used to quantify overall dis-
crimination performance. All modeling and
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performance evaluation were conducted using
Python in the scikit-learn library.

Feature importance

After evaluating the model using the RF mod-
el obtained, the feature importance was quantified
by calculating the total reduction in node impurity
attributed to each conditioning factor, which was
then averaged over all trees in the ensemble. This
can explain why the model made those decisions
by identifying the most influential variables in the
model. The higher mean decrease value indicates
that the variable has a more significant role in the
classification process in the dataset (Li, 2024).

Feature importance values were extracted
directly from the trained Random Forest model
using the feature importances attribute of the
scikit-learn implementation, which represents
the normalized mean decrease in Gini impurity
contributed by each conditioning factor across all
decision trees in the ensemble.

Landslide susceptibility mapping

The probabilistic output of the Random Forest
model was exported in raster format (GeoTIFF)
to generate the landslide susceptibility map. Sus-
ceptibility values were classified into two levels
using the Equal Interval method: low (0.0-0.5
and high (0.5-1.0). All spatial processing and vi-
sualization were performed using ArcGIS 10.8.

RESULTS AND DISCUSSION

Relationship between landslide conditioning
factors and landslide occurrence

The relationship between landslide condition-
ing factors and historical landslide occurrence
was examined using feature importance derived
from the RF model. Model performance in Table
2 was evaluated using a confusion-matrix-based
approach that illustrated in Figure 6. Accuracy,

Table 2. Performance metrics of the random forest model

precision, recall, and F1-score were computed us-
ing formula (1) to (4).

The results indicate that slope aspect is the
most influential factor controlling landslide sus-
ceptibility in the Tinggimoncong District, fol-
lowed by elevation and slope gradient (see Table
3 and Figure 7). The high importance of slope
aspect suggests that slope orientation strongly
affects hydrological and microclimatic condi-
tions, particularly rainfall exposure, soil mois-
ture retention, and vegetation distribution, which
collectively influence slope stability and related
environmental processes (Capitani et al., 2013;
Cellek, 2022; Zhu et al., 2025). Elevation and
slope gradient further emphasize the dominant
role of terrain morphology, as steeper and higher
areas are more susceptible to gravitational failure
under intense rainfall conditions.

Anthropogenic influence is clearly reflected
by the relatively high importance of distance to
road. Road construction and associated slope
cutting, excavation, and modification of natural
drainage patterns can significantly reduce slope
stability, particularly in mountainous environ-
ments. This finding highlights the critical role
of infrastructure development in amplifying

NL (Non-landslide) L (Landslide)

35

- 25

r 20

- 15

- 10

NL L —

Figure 6. Confusion matrix for landslide and non-
landslide classes

True condition

RF model

Landslide (L)

Summation
Non-landslide (NL)

Prediction Landslide (L) 38 (TP) 3 (FP) Precision: 0.927
condition Non-landslide (NL) 2 (FN) 38 (TN) Precision: 0.950
Summation Recall: 0.950 Recall: 0.927 Accuracy: 0.938
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Table 3. Feature importance of conditioning factors
derived from the random forest model

No Conditioning factor Feature importance
1 Slope aspect 0.1761
2 Elevation 0.1515
3 Slope gradient 0.1300
4 Distance to road 0.0780
5 TPI 0.0778
6 Profile curvature 0.0700
7 Lithology 0.0658
8 Plan curvature 0.0600
9 Land use 0.0562
10 Distance to stream 0.0486
1 TWI 0.0446
12 Soil type 0.0413

landslide susceptibility in the study area. Land
use also shows a notable contribution, indicating
that agricultural expansion and land-cover modi-
fication contribute to surface instability through
vegetation removal and soil disturbance.
Geomorphometric indices, including the
topographic position index (TPI), profile curva-
ture, and plan curvature, exhibit moderate im-
portance, reflecting the influence of local terrain
configuration on water convergence and stress
redistribution along slopes. Hydrological factors
such as distance to stream and the topographic
wetness index (TWI) show comparatively low-
er importance but still contribute to landslide

initiation by enhancing pore-water pressure and
reducing soil shear strength at localized scales.
Soil type and lithology display lower rela-
tive importance, suggesting that while material
properties affect slope behavior, landslide occur-
rence in Tinggimoncong is primarily controlled
by topographic and anthropogenic factors rather
than lithological variability alone.

Overall, the feature importance analysis re-
veals that landslide occurrence in the study area is
governed by a combination of dominant morpho-
metric controls and significant human-induced
disturbances, with hydrological and geological
factors acting as secondary modifier.

Model performance assessment and
validation

The predictive performance of the Random
Forest model was evaluated using multiple quan-
titative metrics to assess classification accuracy,
robustness, and generalization capability for envi-
ronmental monitoring and decision-support appli-
cations. Model performance statistics are reported
in Table 2, while classification outcomes are illus-
trated by the confusion matrix shown in Figure 6.

The RF model demonstrates excellent pre-
dictive performance, achieving a high area under
the curve (AUC) value of 0.971 (Figure 8a) and
an average precision (PR-AUC) of 0.956 (Fig-
ure 8b), indicating strong discriminative capabil-
ity between landslide and non-landslide classes in

Slope aspect
Elevation

Slope

Distance to
Road

TPI

Profile
Curvature

Lithology

Plan
Curvature

Land use

Distance to
stream

TWI
Soil Type

0.075
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Figure 7. Feature importance of landslide conditioning factors
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monitoring environmentally driven slope instabil-
ity. The overall accuracy reaches approximately
0.95, and the Fl-score of 0.95 confirms a well-
balanced trade-off between precision and recall.
These results indicate that the model is able to
identify landslide-prone areas with a low rate of
misclassification relevant for reliable environmen-
tal monitoring. Analysis of the confusion matrix
reveals that the model correctly classified 38 land-
slide locations and 38 non-landslide locations, with
only a small number of misclassifications. The low
number of false negatives is particularly important
for environmental monitoring and risk-informed
land management, as it reduces the likelihood of
overlooking environmentally vulnerable zones.

The strong balance between precision and re-
call demonstrates that the RF model generalizes
well to unseen data and is not biased toward ei-
ther class. These findings confirm the suitability
of Random Forest for modeling landslide suscep-
tibility as part of environmental monitoring sys-
tems in complex tropical terrain, where nonlinear
relationships and interactions among environ-
mental variables are common.

Spatial analysis of landslide susceptibility and
land degradation implications

The spatial distribution of landslide suscep-
tibility derived from the Random Forest model is
presented in Figure 9, which illustrates continuous
probabilistic susceptibility values ranging from
0.00 to 1.00 across the Tinggimoncong District.
This probabilistic map represents the direct output
of the model and captures spatial variations in the

likelihood of landslide occurrence as an indicator of
environmental instability. Areas with high probabi-
listic values are predominantly concentrated in the
eastern, northern, and southern parts of the study
area. These zones are characterized by steep slopes,
higher elevations, and intensive land-use activities,
particularly along road corridors and cultivated
hillslopes. The spatial concentration of high-prob-
ability values in these regions reflects the combined
influence of terrain morphology and anthropogenic
disturbances on slope instability that drive ongoing
land degradation processes, consistent with previ-
ous studies (Akinci et al., 2020; Kim et al., 2018;
Liu et al., 2022). In contrast, areas with low proba-
bilistic values are mainly distributed in the western
and southeastern parts of the district, where gentler
terrain and relatively stable land cover prevail indi-
cating lower environmental stress.

For decision-support purposes, the probabilis-
tic susceptibility map was further reclassified into
two susceptibility levels; low and high, as illus-
trated in Figure 10. The classified susceptibility
map clearly delineates zones with elevated land-
slide potential and provides a simplified repre-
sentation suitable for environmental monitoring,
land degradation assessment, and spatial plan-
ning. The high-susceptibility class corresponds
spatially with areas experiencing recurrent slope
failures and intensive land modification, indicat-
ing zones of active land degradation. In these ar-
eas, repeated landslide events contribute to accel-
erated soil erosion, vegetation loss, and long-term
deterioration of land productivity. Conversely,
low-susceptibility zones generally coincide with
more stable geomorphological conditions and
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Figure 8. (2) Receiver operating characteristic (ROC) curve showing the trade-off between true positive rate and
false positive rate, with an area under the curve (AUC) of 0.971; (b) precision—recall (PR) curve illustrating the
relationship between precision and recall, with an average precision (PR-AUC) of 0.956
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Figure 9. Probabilistic landslide susceptibility map of the Tinggimoncong District, south Sulawesi, Indonesia.
The map shows continuous landslide susceptibility values ranging from 0.00 to 1.00 derived from the Random
Forest model, representing the spatial probability of landslide occurrence across the study area
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Figure 10. Classified landslide susceptibility map of the Tinggimoncong District, south Sulawesi, Indonesia.
The probabilistic susceptibility values were reclassified into two classes; low and high susceptibility to support
landslide hazard interpretation, land degradation assessment, and decision-making for disaster risk mitigation
and spatial planning

lower levels of human disturbance, reflecting re-
duced landslide risk and limited land degradation.

The strong spatial consistency between the
probabilistic and classified susceptibility maps
demonstrates the robustness of the Random Forest
model in capturing landslide-prone environments
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in complex terrain. Together, these outputs pro-
vide an environmental monitoring framework
for understanding landslide processes and their
contribution to land degradation, supporting data-
driven land management and sustainable spatial
planning in the Tinggimoncong highlands.
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CONCLUSIONS

This study successfully applied the RF al-
gorithm to assess landslide susceptibility in the
Tinggimoncong District, Gowa Regency, South
Sulawesi, achieving high predictive performance
and model stability (AUC = 0.971; Fl-score =
0.95). Within an environmental monitoring con-
text, the RF approach proved effective in capturing
nonlinear relationships among spatial variables
and produced statistically and spatially consistent
susceptibility patterns that reflect spatial varia-
tions in environmental instability in a complex
tropical terrain. One of the main strengths of the
RF model lies in its ability to process multivariate
datasets with heterogeneous variable types with-
out requiring linearity assumptions, while simul-
taneously providing feature importance informa-
tion relevant for interpreting key environmental
controls. The results indicate that morphometric
factors, particularly slope aspect, slope gradient,
and elevation, together with anthropogenic influ-
ences such as proximity to road networks, are the
dominant controls on landslide susceptibility and
associated land degradation processes in the study
area. These findings highlight the critical role of
both terrain morphology and human activities in
shaping environmentally vulnerable landscapes.

Despite the strong performance of the model,
several limitations should be acknowledged. The
landslide inventory used in this study is limited
in terms of temporal coverage and the number
of documented landslide events. In addition, the
model does not incorporate dynamic triggering
factors such as daily rainfall intensity or soil mois-
ture conditions, which are important variables for
continuous environmental monitoring of slope
processes. Future research should integrate time-
dependent variables and multi-temporal landslide
inventories to strengthen the applicability of land-
slide susceptibility modeling within long-term
environmental monitoring frameworks.

The findings of this study provide a robust
scientific basis for environmental monitoring—in-
formed land management and spatial planning in
the Tinggimoncong highlands. The probabilistic
and classified susceptibility maps can support lo-
cal authorities, including disaster management
and regional planning agencies, as spatial indi-
cators for monitoring environmental stress and
land degradation, in identifying high-risk zones
and prioritizing mitigation measures. Moreover,
the proposed RF-based framework is transferable

and can be readily applied to other regions with
similar geomorphological and geological set-
tings, offering a reliable and efficient machine
learning approach for environmental monitoring
of landslide-prone landscapes and land degrada-
tion management.
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