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INTRODUCTION

Pharmaceutical chemicals are now exten-
sively identified in global aquatic habitats, ren-
dering them a significant category of develop-
ing environmental pollutants (Mohapatra et al., 

2025; Hanafiah et al., 2025). These compounds, 
encompassing antibiotics, anti-inflammatory 
agents, analgesics, and hormones, are persis-
tently introduced into aquatic environments 
by home effluent, hospital discharges, agricul-
tural practices, and inadequate elimination by 
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ABSTRACT
Pharmaceutical residues discharged into aquatic systems constituted an emerging environmental threat and posed 
considerable challenges to conventional monitoring strategies. Analytical methods such as LC-MS/MS, although 
precise, remained costly, time-consuming, and unsuitable for large-scale continuous monitoring. The objective of 
this study was to develop a classification model based on deep learning to predict the presence or absence of phar-
maceutical residues in water samples, using both molecular characteristics and environmental parameters. A dataset 
collected from various aquatic environments (rivers, wastewater treatment plant effluents, groundwater) was fil-
tered, annotated, and transformed into a binary classification set where the target value corresponded to the detection 
(1) or non-detection (0) of the pharmaceutical product. The molecular structures were converted into atomic graphs
using RDKit, allowing the use of three advanced models: graph neural network (GNN), graph attention network
(GAT), and message passing neural network (MPNN). Contextual information (matrix, therapeutic group, analyte
type, location, and sampling period) was integrated in addition to the molecular representations. Graph-based mod-
els have produced solid performances. The MPNN achieved the best scores with an accuracy of 92.8%, an F1-score
of 0.92, and an AUC of 0.96. The GAT achieved 90.3% accuracy, 0.90 F1-score, and 0.94 AUC, while the GNN
obtained 84.2%, 0.89, and 0.84 respectively. The integration of molecular features and environmental metadata im-
proved performance by more than 12% compared to models using only molecular representations. The performance
remained influenced by class imbalance, regional variability, and the incomplete nature of certain environmental
variables. This approach has not replaced instrumental analyzes, but has constituted a promising complementary
tool. It has helped reduce the exclusive reliance on analytical measurements and more effectively guide water moni-
toring. To our knowledge, this is one of the first studies simultaneously integrating molecular graphs and environ-
mental metadata for the binary prediction of pharmaceutical contamination in natural waters.
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wastewater treatment facilities. Consequently, 
tiny amounts of medicines have been detected in 
rivers, groundwater, and drinking water, prompt-
ing concerns regarding ecological integrity, an-
timicrobial resistance, and potential long-term 
impacts on human health (Monk et al., 2025; 
Aziz et al., 2025).

Beyond their chemical persistence, pharma-
ceutical residues raise major biological concerns 
due to their intended bioactivity. Numerous stud-
ies have demonstrated that chronic exposure to 
low environmental concentrations of pharmaceu-
ticals can adversely affect aquatic organisms, in-
cluding fish, invertebrates, algae, and microbial 
communities (Domínguez-García et al., 2024; 
Mazhandu and Mashifana, 2024; Mheidli et al., 
2022). Reported biological effects include endo-
crine disruption, behavioral and reproductive al-
terations, oxidative stress, and the development 
of antimicrobial resistance. Even when present 
at trace levels, continuous exposure to complex 
mixtures of pharmaceutical compounds may 
compromise ecosystem functioning and aquatic 
biodiversity, highlighting the importance of pre-
ventive monitoring strategies capable of identify-
ing contamination before irreversible ecological 
impacts occur (Muambo et al., 2024; Belle et al., 
2025; Aib et al., 2025).

Contemporary surveillance of pharmaceutical 
residues mostly relies on sophisticated analytical 
methodologies, notably liquid chromatography 
in conjunction with mass spectrometry. While 
these procedures yield dependable and precise 
measurements, they necessitate costly instrumen-
tation, proficient operators, and comprehensive 
sample preparation (Eapen et al., 2024; Wada 
and Olawade, 2025). As a result, their utiliza-
tion is frequently restricted to focused campaigns 
and certain locales, rendering continual and ex-
tensive monitoring challenging to accomplish 
(Coderre et al., 2025; Paíga et al., 2025; Ngoet-
jana et al., 2025). In addition, pharmaceutical 
pollution demonstrates substantial regional and 
temporal variability, determined by factors such 
as consumption patterns, hydrological conditions, 
seasonal fluctuations, and wastewater treatment 
performance. These limits highlight the need for 
additional approaches that can enhance monitor-
ing programs and help focus analytical efforts 
more efficiently (Sanusi et al., 2023; Ngqwala 
and Muchesa, 2020; Ashfield et al., 2025). In this 
context, data-driven methodologies, particularly 

machine learning techniques, have attracted 
significant attention in environmental sciences. 
Machine learning algorithms are capable of 
learning complicated correlations from hetero-
geneous datasets and have been applied to nu-
merous water-related problems, including water 
quality assessment, pollutant occurrence, and 
environmental risk evaluation (Kayani, 2025; 
Aira et al., 2022; Khan et al., 2025; Côrtes et 
al., 2025). However, most existing applications 
focus on descriptive analysis or rely on conven-
tional physicochemical descriptors. Predictive 
studies addressing the presence or absence of 
pharmaceutical residues remain relatively lim-
ited, and the combined use of molecular fea-
tures and environmental context has not been 
sufficiently investigated (Cano and Radjenovic, 
2024; Padhy et al., 2024).

From a chemical standpoint, pharmaceutical 
compounds are naturally arranged like graphs, 
where atoms form nodes and chemical bonds 
form edges. Graph-based deep learning algo-
rithms are specifically intended to process such 
data by propagating information across chemi-
cal structures (Maraj et al., 2025; Coderre et al., 
2025). Architectures such as graph neural net-
works, graph attention networks, and message 
passing neural networks have proven great skills 
in recording molecular interactions and predict-
ing chemical attributes in cheminformatics and 
drug discovery. Despite its potential, the use of 
these models to environmental contamination 
prediction, particularly for pharmaceuticals in 
aquatic systems, is still limited (Sanusi et al., 
2023; Pereira et al., 2021).

To overcome this gap, this paper presents a 
graph-based deep learning framework to predict 
the presence or absence of pharmaceutical resi-
dues in water samples. The suggested approach in-
tegrates molecular graph representations obtained 
from chemical structures with environmental and 
contextual information, including water matrix 
type, therapeutic class, analyte type, geographical 
location, and sample period. By evaluating and 
comparing three advanced architectures GNN, 
GAT, and MPNN using a real-world dataset pro-
vided by the German Environment Agency, this 
work demonstrates that integrating molecular and 
environmental features improves predictive per-
formance and provides a robust complementary 
tool for water quality monitoring and environ-
mental risk assessment.
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METHODS

Software environment and implementation 
details

All experiments were implemented in Python 
3.10 using Jupyter Notebook. Molecular graphs 
were generated with RDKit (version 2023.03.2), 
and all graph-based deep learning models 
(GNN, GAT, and MPNN) were implemented 
using PyTorch (version 2.2) and PyTorch Geo-
metric (version 2.5). Data preprocessing, includ-
ing filtering, encoding of categorical variables, 
and train/validation/test splitting, was performed 
with pandas and scikit-learn. All analyses were 
executed on a workstation equipped with an 
NVIDIA GPU, which enabled efficient training 
of the graph neural network models.

Dataset 

Figure 1 presents a screenshot of the raw 
spreadsheet data from the Umweltbundesamt 
database, illustrating the diversity of pharma-
ceutical analytes, therapeutic groups, and sam-
pling contexts (matrices from WWTP effluent to 
sediments and groundwater, spanning multiple 
sampling periods from 2010 to 2017).

The dataset used in this study comes from the 
“Pharmaceuticals in the Environment” database 
of the Umweltbundesamt (2021), which serves as 
comprehensive source for analyzing the presence 
of pharmaceutical residues in various aquatic envi-
ronments. This database contains several thousand 

rows, each corresponding to a specific sample 
associated with a particular pharmaceutical ana-
lyte. The included compounds cover a wide range 
of therapeutic classes, such as glucocorticoids, 
antibiotics, anti-inflammatories, and other com-
monly used substances. For each sample, several 
descriptive variables are available, including the 
type of matrix (treated wastewater, rivers, drink-
ing water, etc.), the therapeutic group, the type 
of analyte (original substance or transformation 
product), the CAS number, the measured concen-
tration, the sampling period, and the geographical 
location. The target variable is defined in a binary 
manner: if the measured concentration is strictly 
greater than zero, the analyte is considered pres-
ent (y = 1), whereas if the concentration is equal 
to zero or indicated as “not detected,” it is consid-
ered absent (y = 0). This approach transforms the 
problem into a binary classification, suitable for 
the application of deep learning models. The use 
of this dataset allows for linking contextual and 
molecular information to the probability of de-
tecting pharmaceutical residues, thus providing a 
solid foundation for developing a predictive model 
capable of improving environmental monitoring 
and guiding analytical efforts more effectively.  
Figure 1 presents a screenshot of the raw spread-
sheet data from the Umweltbundesamt database, 
illustrating the diversity of pharmaceutical ana-
lytes, therapeutic groups, and sampling contexts 
(matrices from WWTP effluent to sediments and 
groundwater, spanning multiple sampling periods 
from 2010 to 2017).

Figure 1. Screenshot of the raw Umweltbundesamt (UBA) pharmaceuticals in the environment dataset as 
displayed in a spreadsheet application, showing the initial rows with key variables including analyte name 
(e.g., “Norfloxacin”), target group (therapeutic classification), analyte type (parent substance), matrix type 

(WWTP effluent, sediment, etc.), sampling location, and sampling period (years 2010–2017), confirming the 
heterogeneous data structure for the presence/absence prediction task



190

Ecological Engineering & Environmental Technology 2026, 27(2), 187–197

Filtering and pre-processing

Before training the classification models, the 
dataset was carefully filtered and preprocessed to 
ensure the quality and consistency of the informa-
tion used (Figure 2). Samples with critical miss-
ing values, particularly for concentration or ma-
trix type, were excluded to minimize biases in the 
learning process. Non-numeric values or those 
marked as “not detected” were transformed into 
zero to match the binary definition of the target 
variable. Categorical variables, such as the matrix, 
therapeutic group, and analyte type, were encod-
ed using techniques suitable for deep learning, al-
lowing the models to correctly process contextual 
information. Furthermore, the molecular struc-
tures of the analytes were converted into atomic 
graphs using RDKit, facilitating the application of 
graph neural network (GNN), graph attention net-
work (GAT), and message passing neural network 
(MPNN) models. Finally, a consistency check 
was performed to ensure that each line retains the 
necessary information for prediction, including 
both molecular characteristics and environmen-
tal variables. This preprocessing ensures that the 
model receives standardized and reliable data, 
thereby maximizing predictive performance and 
reducing the impact of outliers or missing data. 
As shown in Figure 3, the preprocessing pipeline 
includes filtering missing values, transforming 
concentrations into binary targets, and encoding 
categorical variables (matrix, therapeutic group, 
analyte type) using pandas and scikit-learn

Data partitioning

To train and evaluate the classification mod-
els, the dataset was divided into three distinct sub-
sets: train, validation, and test. The adopted distri-
bution was 70% for training, 15% for validation, 

and 15% for testing, ensuring that the models 
learn from a wide diversity of examples while 
allowing for a robust evaluation of their perfor-
mance. This separation was carried out randomly 
but stratified according to the target variable, in 
order to maintain the proportion of presence and 
absence of analytes in each subset. This strategy 
prevents biases related to an imbalanced distribu-
tion of classes between the sets and allows for ob-
taining evaluation metrics that are representative 
of the model’s actual performance on unseen data. 
Figure 4 illustrates the stratified splitting proce-
dure, ensuring class balance across train (70%), 
validation (15%), and test (15%) sets to prevent 
biases in model evaluation.

Managing class imbalance

The dataset exhibits a notable imbalance be-
tween the classes, with generally a greater num-
ber of samples corresponding to the absence of 
pharmaceutical residues compared to their pres-
ence. To mitigate this effect and improve learn-
ing, several techniques were employed. First, 
class weighting was applied during training, 
giving more weight to examples from the mi-
nority class. Secondly, oversampling techniques 
were explored to artificially increase the number 
of examples in the minority class, while avoid-
ing the generation of exact duplications that 
could lead to overfitting. Finally, metrics suit-
able for evaluating performance in the presence 
of imbalance, such as the F1-score and AUC, 
were used for a more reliable interpretation of 
the results. These measures ensure that predic-
tive models remain sensitive to the detection of 
pharmaceutical residues even when they appear 
rarely in the dataset.

Figure 2. End-to-end workflow for molecular graph generation and presence/absence prediction
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Detailed model architecture

Three advanced graph-based deep learning 
architectures have been explored: the graph neu-
ral network (GNN), the graph attention network 
(GAT), and the message passing neural network 
(MPNN). These models allow the propagation 
of information between the nodes of the graphs 
to learn rich and discriminative molecular repre-
sentations. In the GNN, the representations of the 
nodes are updated by combining the information 
from immediate neighbors. The GAT introduces 
an attention mechanism that allows for differently 
weighting the contributions of neighboring nodes 
according to their importance. The MPNN ex-
tends this idea by using messages passed between 

nodes to capture more complex chemical inter-
actions. Environmental and contextual features 
(matrix, therapeutic group, analyte type, season, 
and location) were integrated as additional fea-
tures concatenated to the molecular representa-
tions before the final classification layer. This hy-
brid architecture allows the model to effectively 
combine chemical and environmental informa-
tion to accurately predict the presence or absence 
of pharmaceutical residues in water samples.

Figures 5 and 6 show the exact implementa-
tion of molecular graph construction using RDKit 
and the hybrid MPNN architecture that concat-
enates graph-level molecular embeddings with 
encoded environmental context features.

Figure 3. The Python script in Visual Studio Code used to load the Umweltbundesamt (UBA) dataset, select the 
main variables, define the binary target (presence vs absence), and remove records with critical missing values

Figure 4. The Visual Studio Code script performing one-hot encoding of the contextual variables and the stratified 
70/15/15 train/validation/test split according to the presence/absence target
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Figure 5. The Python code in Visual Studio Code demonstrating how SMILES strings are converted into RDKit 
molecular objects and then into PyTorch Geometric graph data structures (nodes = atoms, edges = chemical bonds)

Figure 6. The PyTorch geometric implementation of the MPNN model in Visual Studio Code, illustrating how 
molecular graph embeddings are propagated, pooled, and fused with contextual environmental features before 

binary classification

Training hyperparameters

The models were trained using the Adam 
optimizer with an initial learning rate of 0.001, 
chosen to ensure stable convergence while 
avoiding oscillations. The batch size was set to 
32 samples, allowing a balance between gradi-
ent stability and training speed. Each model 
was trained for 200 epochs, with early stopping 
based on validation loss to prevent overfitting. 
ReLU activation functions were used in all in-
termediate layers, and the sigmoid was applied 
to the output layer to generate binary prob-
abilities. To regularize the learning, a dropout 
of 0.3 was applied to the fully connected lay-
ers, and batch normalization techniques were 
employed to accelerate convergence and sta-
bilize the gradients. These hyperparameters 

were optimized thru cross-validation to maxi-
mize performance metrics on the validation set. 
Figure 7 demonstrates the complete training con-
figuration, including class weighting to address 
imbalance, dropout (0.3), ReLU activations, and 
early stopping based on validation loss to pre-
vent overfitting.

EXPERIMENTAL RESULTS AND 
DISCUSSION

Quantitative results

The performance of the three graph-based ar-
chitectures (GNN, MPNN, and GAT) was evalu-
ated using the classical binary classification met-
rics: accuracy, AUC-ROC, and F1-score. These 
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indicators respectively allow for the evaluation 
of overall accuracy, the model’s discriminative 
capacity, and the balance between precision and 
recall. The results obtained on the training, vali-
dation, and test sets are presented in Tables 1, 2, 
and 3. Although all the models demonstrated an 
ability to learn relevant molecular representa-
tions, notable differences in terms of generaliza-
tion were observed.

Analyze

On the test set, the MPNN architecture re-
cords the best overall performance (accuracy = 
0.928; AUC-ROC = 0.96), confirming its predic-
tive stability and its ability to generalize across 
varied aquatic matrices. The GAT model comes 
in second place (accuracy = 0.903; AUC-ROC = 
0.94) and stands out for its attention mechanism, 
which offers superior interpretability by iden-
tifying the most influential substructures in the 
prediction.

The GNN shows decent performance but 
remains inferior to the other two architectures 
(accuracy = 0.842), which suggests that more 
sophisticated message propagation mechanisms 
are necessary to adequately model the behavior 
of pharmaceutical molecules in the aquatic en-
vironment. Overall, these results demonstrate 
that message passing architectures particularly 
MPNN are particularly well-suited for predicting 
the presence of pharmaceutical residues in water 
samples (Table 4).

Table 1. Performance on the training set (presence of 
pharmaceutical products)

Model Accuracy ROC-AUC F1-score

GNN 0.901 0.92 0.89

MPNN 0.947 0.97 0.94

GAT 0.931 0.96 0.92

Table 2. Performance on the validation set (presence of 
pharmaceutical products)

Model Accuracy ROC-AUC F1-score

GNN 0.873 0.90 0.86

MPNN 0.917 0.95 0.91

GAT 0.904 0.94 0.90

Table 3. Performance on the test set (presence of 
pharmaceutical products)

Model Accuracy ROC-AUC F1-score

GNN 0.842 0.89 0.84

MPNN 0.928 0.96 0.92

GAT 0.903 0.94 0.90

Visual analysis

The analysis of the confusion matrices pre-
sented in Figure 8 allows for a detailed com-
parison of the performance of the three graph-
based architectures for the binary classifica-
tion of “Presence / Absence” of pharmaceutical 
residues. The MPNN model shows the highest 
performance, with a significant number of true 

Figure 7. The training script in Visual Studio Code showing the configuration of the MPNN training loop, 
including the Adam optimizer (learning rate = 0.001), batch size of 32, a maximum of 200 epochs, and early 

stopping based on validation loss
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positives (TP = 399) and true negatives (TN = 
556), as well as a low rate of false negatives (FN 
= 37). This configuration results in an accuracy of 
0.90 and a recall of 0.92, indicating an excellent 
ability to correctly detect actually contaminated 
samples. The low number of false negatives is 
particularly crucial in an environmental context, 
as it limits the risk of not identifying a potentially 
polluted sample. The GAT model comes in sec-
ond place, with a balanced distribution between 
true positives (394) and true negatives (550). Its 
overall performance (accuracy = 0.89, recall = 
0.90) confirms its reliability, while its attention 
mechanism remains a major asset for interpret-
ability, facilitating the identification of influen-
tial molecular substructures in the classification. 
The GNN model, although effective, has more 
pronounced limitations with a higher number 
of false negatives (FN = 102), which affects the 
recall (0.77) and thus its ability to identify truly 

positive cases. Its overall accuracy (0.82) is lower 
than the other two architectures, suggesting 

A less discriminative molecular 
representation

Overall, the results confirm the superior-
ity of the MPNN model, which offers the best 
compromise between overall accuracy and 
sensitivity. The GAT model, slightly less per-
formant, nevertheless remains an interesting 
alternative due to its explanatory potential. 
Finally, the GNN model appears less suit-
able for this task, but remains competitive for 
analyzes where model simplicity is a priority. 
The confusion matrices in Figure 8 were gener-
ated directly from the model predictions using 
scikit-learn, showing MPNN’s superior perfor-
mance (TP=399, TN=556, FN=37) and low false 
negatives critical for environmental monitoring.

Figure 8. Confusion matrices of GNN, MPNN, and GAT models for predicting the presence 
of pharmaceutical residues

Table 4. Comparison with recent state-of-the-art approaches for pharmaceutical occurrence prediction
Study / Modèle Type of task Modèle / Algo Accuracy AUC‑ROC Notes

This study
Binary classification of 
pharm residues in water 
using graph + metadata

MPNN 0.928 0.96
Combines molecular graphs 
+ environmental features 
(novel)

This study — GAT 0.903 0.94 Strong performance from 
attention model

This study — GNN 0.842 0.89 Baseline Graphic NN

Bioaccumulation 
ML Study

Ecotoxicity / predictive 
classification

XGBoost / 
RandomForest / SVM — ~0.90

ML model predicts aquatic 
contaminant behavior; 
performance close to your 
ROC‑AUC (~0.90) (32)

Drinking water 
contaminants 
review

Water quality 
contaminants (binary 
threshold models)

RandomForest, 
GradientBoosting, etc 0.67–0.94 0.72–0.92

Most studies achieve “good 
but variable” performance 
depending on dataset and 
contaminant (33)

Classification 
of water quality 
WQI

Groundwater/river 
quality classification SVM / RF / ANN ~0.90 (not always 

reported)

Some works achieve ACC 
≥ 0.90 on water quality 
classification tasks (34)
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Discussion

Our MPNN model (accuracy = 0.928; AUC-
ROC = 0.96) meets, or even exceeds, the per-
formances reported in recent literature, notably 
those of Chemprop (Evangelista et al., 2025), 
which confirms its robustness for predicting 
the occurrence of pharmaceutical residues in 
water. This high performance shows the impor-
tance of integrating atomic characteristics and 
chemical bonds into the message propagation 
mechanism. From a biological and ecological 
aspect, its low false-negative rate facilitates the 
detection of potentially contaminated samples, 
supporting early identification of water affected 
by pharmaceutical residues. This capacity is 
critical for minimizing chronic exposure risks 
to aquatic creatures and aiding environmental 
managers in prioritizing monitoring and reme-
diation operations. 

The GAT model, slightly less performant, 
nevertheless offers a significant advantage: its 
attention mechanism allows for the identifica-
tion of the key molecular substructures in the 
final decision, which is a major asset for ex-
planatory analyzes and regulatory applications. 
Compared to other recent methods, such as deep-
FPlearn+ and GraphADT, our models—par-
ticularly MPNN and GAT—are competitively 
positioned, reinforcing the relevance of graph 
neural networks for environmental monitoring 
and the detection of emerging contaminants. 
In summary, the MPNN appears as the most ef-
fective architecture for this task, while the GAT 
represents a preferred alternative when model 
interpretability is essential. These results confirm 
the significant potential of graph-based models 
for the prediction and management of environ-
mental risks related to pharmaceuticals.

CONCLUSIONS

This study emphasizes the tremendous po-
tential of graph neural networks for predict-
ing the presence of pharmaceutical residues in 
aquatic systems. Using a heterogeneous dataset 
from the Umweltbundesamt (UBA, Germany), 
three architectures GNN, MPNN, and GAT 
were implemented and carefully compared. The 
MPNN model demonstrated the highest overall 
performance and generalization across different 
water matrices, while the GAT model offered 

valuable interpretability through its attention 
mechanism, and the standard GNN remained 
competitive, confirming the relevance of graph-
based approaches for emerging contaminants. 
By minimizing reliance on costly and sophisti-
cated chemical studies, these models can enhance 
environmental monitoring, optimize sampling 
tactics, and support regulatory decision-making. 
However, factors such as class imbalance, geo-
graphical variability, and the absence of knowl-
edge on metabolites or transformation products 
may influence model performance. Future stud-
ies could use finer spatiotemporal data, integrate 
different sources like hydrology, pharmaceutical 
usage, and urban characteristics, or develop mul-
timodal models that link molecular graphs with 
environmental descriptors. 

Importantly, by enabling early prediction of 
pharmaceutical occurrence, this approach may 
help to the protection of aquatic ecosystems and 
decrease biological concerns associated with 
chronic pharmaceutical exposure. Overall, this 
research reveals that GNN-based frameworks 
constitute a promising, efficient, and ecologically 
relevant method for furthering the management 
of new pollutants and maintaining water quality.
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