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ABSTRACT

Pharmaceutical residues discharged into aquatic systems constituted an emerging environmental threat and posed
considerable challenges to conventional monitoring strategies. Analytical methods such as LC-MS/MS, although
precise, remained costly, time-consuming, and unsuitable for large-scale continuous monitoring. The objective of
this study was to develop a classification model based on deep learning to predict the presence or absence of phar-
maceutical residues in water samples, using both molecular characteristics and environmental parameters. A dataset
collected from various aquatic environments (rivers, wastewater treatment plant effluents, groundwater) was fil-
tered, annotated, and transformed into a binary classification set where the target value corresponded to the detection
(1) or non-detection (0) of the pharmaceutical product. The molecular structures were converted into atomic graphs
using RDKit, allowing the use of three advanced models: graph neural network (GNN), graph attention network
(GAT), and message passing neural network (MPNN). Contextual information (matrix, therapeutic group, analyte
type, location, and sampling period) was integrated in addition to the molecular representations. Graph-based mod-
els have produced solid performances. The MPNN achieved the best scores with an accuracy of 92.8%, an F1-score
0f 0.92, and an AUC of 0.96. The GAT achieved 90.3% accuracy, 0.90 Fl-score, and 0.94 AUC, while the GNN
obtained 84.2%, 0.89, and 0.84 respectively. The integration of molecular features and environmental metadata im-
proved performance by more than 12% compared to models using only molecular representations. The performance
remained influenced by class imbalance, regional variability, and the incomplete nature of certain environmental
variables. This approach has not replaced instrumental analyzes, but has constituted a promising complementary
tool. It has helped reduce the exclusive reliance on analytical measurements and more effectively guide water moni-
toring. To our knowledge, this is one of the first studies simultaneously integrating molecular graphs and environ-
mental metadata for the binary prediction of pharmaceutical contamination in natural waters.

Keywords: pharmaceutical pollutants, water quality monitoring, molecular graphs, graph neural networks, graph
attention networks, message passing neural networks.

INTRODUCTION

Pharmaceutical chemicals are now exten-
sively identified in global aquatic habitats, ren-
dering them a significant category of develop-
ing environmental pollutants (Mohapatra et al.,

2025; Hanafiah et al., 2025). These compounds,
encompassing antibiotics, anti-inflammatory
agents, analgesics, and hormones, are persis-
tently introduced into aquatic environments
by home effluent, hospital discharges, agricul-
tural practices, and inadequate elimination by

187


https://orcid.org/0009-0008-2386-836X
https://orcid.org/0009-0001-1439-7817
https://orcid.org/0000-0002-9448-6165
https://orcid.org/0000-0001-8667-6113

Ecological Engineering & Environmental Technology 2026, 27(2), 187-197

wastewater treatment facilities. Consequently,
tiny amounts of medicines have been detected in
rivers, groundwater, and drinking water, prompt-
ing concerns regarding ecological integrity, an-
timicrobial resistance, and potential long-term
impacts on human health (Monk et al., 2025;
Aziz et al., 2025).

Beyond their chemical persistence, pharma-
ceutical residues raise major biological concerns
due to their intended bioactivity. Numerous stud-
ies have demonstrated that chronic exposure to
low environmental concentrations of pharmaceu-
ticals can adversely affect aquatic organisms, in-
cluding fish, invertebrates, algae, and microbial
communities (Dominguez-Garcia et al., 2024;
Mazhandu and Mashifana, 2024; Mheidli et al.,
2022). Reported biological effects include endo-
crine disruption, behavioral and reproductive al-
terations, oxidative stress, and the development
of antimicrobial resistance. Even when present
at trace levels, continuous exposure to complex
mixtures of pharmaceutical compounds may
compromise ecosystem functioning and aquatic
biodiversity, highlighting the importance of pre-
ventive monitoring strategies capable of identify-
ing contamination before irreversible ecological
impacts occur (Muambo et al., 2024; Belle et al.,
2025; Aib et al., 2025).

Contemporary surveillance of pharmaceutical
residues mostly relies on sophisticated analytical
methodologies, notably liquid chromatography
in conjunction with mass spectrometry. While
these procedures yield dependable and precise
measurements, they necessitate costly instrumen-
tation, proficient operators, and comprehensive
sample preparation (Eapen et al., 2024; Wada
and Olawade, 2025). As a result, their utiliza-
tion is frequently restricted to focused campaigns
and certain locales, rendering continual and ex-
tensive monitoring challenging to accomplish
(Coderre et al., 2025; Paiga et al., 2025; Ngoet-
jana et al., 2025). In addition, pharmaceutical
pollution demonstrates substantial regional and
temporal variability, determined by factors such
as consumption patterns, hydrological conditions,
seasonal fluctuations, and wastewater treatment
performance. These limits highlight the need for
additional approaches that can enhance monitor-
ing programs and help focus analytical efforts
more efficiently (Sanusi et al., 2023; Ngqwala
and Muchesa, 2020; Ashfield et al., 2025). In this
context, data-driven methodologies, particularly
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machine learning techniques, have attracted
significant attention in environmental sciences.
Machine learning algorithms are capable of
learning complicated correlations from hetero-
geneous datasets and have been applied to nu-
merous water-related problems, including water
quality assessment, pollutant occurrence, and
environmental risk evaluation (Kayani, 2025;
Aira et al., 2022; Khan et al., 2025; Cortes et
al., 2025). However, most existing applications
focus on descriptive analysis or rely on conven-
tional physicochemical descriptors. Predictive
studies addressing the presence or absence of
pharmaceutical residues remain relatively lim-
ited, and the combined use of molecular fea-
tures and environmental context has not been
sufficiently investigated (Cano and Radjenovic,
2024; Padhy et al., 2024).

From a chemical standpoint, pharmaceutical
compounds are naturally arranged like graphs,
where atoms form nodes and chemical bonds
form edges. Graph-based deep learning algo-
rithms are specifically intended to process such
data by propagating information across chemi-
cal structures (Maraj et al., 2025; Coderre et al.,
2025). Architectures such as graph neural net-
works, graph attention networks, and message
passing neural networks have proven great skills
in recording molecular interactions and predict-
ing chemical attributes in cheminformatics and
drug discovery. Despite its potential, the use of
these models to environmental contamination
prediction, particularly for pharmaceuticals in
aquatic systems, is still limited (Sanusi et al.,
2023; Pereira et al., 2021).

To overcome this gap, this paper presents a
graph-based deep learning framework to predict
the presence or absence of pharmaceutical resi-
dues in water samples. The suggested approach in-
tegrates molecular graph representations obtained
from chemical structures with environmental and
contextual information, including water matrix
type, therapeutic class, analyte type, geographical
location, and sample period. By evaluating and
comparing three advanced architectures GNN,
GAT, and MPNN using a real-world dataset pro-
vided by the German Environment Agency, this
work demonstrates that integrating molecular and
environmental features improves predictive per-
formance and provides a robust complementary
tool for water quality monitoring and environ-
mental risk assessment.
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METHODS

Software environment and implementation
details

All experiments were implemented in Python
3.10 using Jupyter Notebook. Molecular graphs
were generated with RDKit (version 2023.03.2),
and all graph-based deep learning models
(GNN, GAT, and MPNN) were implemented
using PyTorch (version 2.2) and PyTorch Geo-
metric (version 2.5). Data preprocessing, includ-
ing filtering, encoding of categorical variables,
and train/validation/test splitting, was performed
with pandas and scikit-learn. All analyses were
executed on a workstation equipped with an
NVIDIA GPU, which enabled efficient training
of the graph neural network models.

Dataset

Figure 1 presents a screenshot of the raw
spreadsheet data from the Umweltbundesamt
database, illustrating the diversity of pharma-
ceutical analytes, therapeutic groups, and sam-
pling contexts (matrices from WWTP effluent to
sediments and groundwater, spanning multiple
sampling periods from 2010 to 2017).

The dataset used in this study comes from the
“Pharmaceuticals in the Environment” database
of the Umweltbundesamt (2021), which serves as
comprehensive source for analyzing the presence
of pharmaceutical residues in various aquatic envi-
ronments. This database contains several thousand

rows, each corresponding to a specific sample
associated with a particular pharmaceutical ana-
lyte. The included compounds cover a wide range
of therapeutic classes, such as glucocorticoids,
antibiotics, anti-inflammatories, and other com-
monly used substances. For each sample, several
descriptive variables are available, including the
type of matrix (treated wastewater, rivers, drink-
ing water, etc.), the therapeutic group, the type
of analyte (original substance or transformation
product), the CAS number, the measured concen-
tration, the sampling period, and the geographical
location. The target variable is defined in a binary
manner: if the measured concentration is strictly
greater than zero, the analyte is considered pres-
ent (y = 1), whereas if the concentration is equal
to zero or indicated as “not detected,” it is consid-
ered absent (y = 0). This approach transforms the
problem into a binary classification, suitable for
the application of deep learning models. The use
of this dataset allows for linking contextual and
molecular information to the probability of de-
tecting pharmaceutical residues, thus providing a
solid foundation for developing a predictive model
capable of improving environmental monitoring
and guiding analytical efforts more effectively.
Figure 1 presents a screenshot of the raw spread-
sheet data from the Umweltbundesamt database,
illustrating the diversity of pharmaceutical ana-
lytes, therapeutic groups, and sampling contexts
(matrices from WWTP effluent to sediments and
groundwater, spanning multiple sampling periods
from 2010 to 2017).

2 Name of Analyte Targetgroup  Type of Analyte  Matrix
3 b ~ |Name of Analyte -1/ Target group ~ |Type of Analyte - |Matrix ~ |Sampling Location ~ i |
177165 232069 Norfloxacin Human Parent Sewage hospital (untreated) Hospital of Tumaco 2017 2017

177166, 232756 Norfloxacin
177167 232757 Norfloxacin
177168| 232758 Norfloxacin
177169 233655 Norfloxacin
177170| 233656 Norfloxacin

177171 233657 Norfloxacin
177172 233658 Norfloxacin
177173 233659 Norfloxacin

177174, 233660 Norfloxacin
177175 233661 Norfloxacin
177176 235782 Norfloxacin

177177 235783 Norfloxacin
177178 235784 Norfloxacin
177179 241671 Norfloxacin
177180| 241672 Norfloxacin
177181 241673 Norfloxacin
177182 241674 Norfloxacin
177183, 241675 Norfloxacin

177184 241676 Norfloxacin
177185 241677 Norfloxacin

Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human
Human

Parent
Parent
Parent
Parent
Parent
Parent
Parent
Parent
Parent
Parent
Parent
Parent
Parent
Parent
Parent
Parent
Parent
Parent
Parent
Parent

WWTP inflow (untreated)
WWTP effluent (treated)
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Leachate

Leachate

Leachate

Leachate

Leachate

Leachate

Leachate

Sediment - River/Stream
Sediment - River/Stream
Sediment - River/Stream
WWTP effluent (treated)
WWTP effluent (treated)
WWTP effluent (treated)
WWTP effluent (treated)
WWTP effluent (treated)
WWTP effluent (treated)
WWTP effluent (treated)

WWTP Weining Count
WWTP Weining Count
WWTP Weining Count
Xi'an, Qicungou Landfi
Guiyang , Gaoyan Lanc
Nanjing, Shuige Landfi
Suzhou, Qizishan Land
Shanghai, Laogang Lan
Hangzhou, Tianzilin La
Shenzhen, Xiaping Lan
Charmoise River, upsti
Charmoise River, dowr
Charmoise River, far d
WWTP in Bucharest
WWTP in Cluj-Napoca
WWTP in Sabac
WWTP in Zagreb
WWTP in Varazdin
WWTP in Ljubljana
WWTP in Bud

-9999
-9999
-9999
-9999
-9999
-9999
2010
2010
2010
2017
2017
2017
2017
2017
2017
2017

Figure 1. Screenshot of the raw Umweltbundesamt (UBA) pharmaceuticals in the environment dataset as

displayed in a spreadsheet application, showing the initial rows with key variables including analyte name
(e.g., “Norfloxacin”), target group (therapeutic classification), analyte type (parent substance), matrix type
(WWTP effluent, sediment, etc.), sampling location, and sampling period (years 2010-2017), confirming the
heterogeneous data structure for the presence/absence prediction task
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Filtering and pre-processing

Before training the classification models, the
dataset was carefully filtered and preprocessed to
ensure the quality and consistency of the informa-
tion used (Figure 2). Samples with critical miss-
ing values, particularly for concentration or ma-
trix type, were excluded to minimize biases in the
learning process. Non-numeric values or those
marked as “not detected” were transformed into
zero to match the binary definition of the target
variable. Categorical variables, such as the matrix,
therapeutic group, and analyte type, were encod-
ed using techniques suitable for deep learning, al-
lowing the models to correctly process contextual
information. Furthermore, the molecular struc-
tures of the analytes were converted into atomic
graphs using RDKit, facilitating the application of
graph neural network (GNN), graph attention net-
work (GAT), and message passing neural network
(MPNN) models. Finally, a consistency check
was performed to ensure that each line retains the
necessary information for prediction, including
both molecular characteristics and environmen-
tal variables. This preprocessing ensures that the
model receives standardized and reliable data,
thereby maximizing predictive performance and
reducing the impact of outliers or missing data.
As shown in Figure 3, the preprocessing pipeline
includes filtering missing values, transforming
concentrations into binary targets, and encoding
categorical variables (matrix, therapeutic group,
analyte type) using pandas and scikit-learn

Data partitioning

To train and evaluate the classification mod-
els, the dataset was divided into three distinct sub-
sets: train, validation, and test. The adopted distri-
bution was 70% for training, 15% for validation,

Data Preprocessing &
Graph Construction
Cleaning

&

v

Dataset
4 C1=CC=CC=C1
® '
# Molecule
Source : Unwaltbundesamt ¥
Graph (NetworkX)

and 15% for testing, ensuring that the models
learn from a wide diversity of examples while
allowing for a robust evaluation of their perfor-
mance. This separation was carried out randomly
but stratified according to the target variable, in
order to maintain the proportion of presence and
absence of analytes in each subset. This strategy
prevents biases related to an imbalanced distribu-
tion of classes between the sets and allows for ob-
taining evaluation metrics that are representative
of the model’s actual performance on unseen data.
Figure 4 illustrates the stratified splitting proce-
dure, ensuring class balance across train (70%),
validation (15%), and test (15%) sets to prevent
biases in model evaluation.

Managing class imbalance

The dataset exhibits a notable imbalance be-
tween the classes, with generally a greater num-
ber of samples corresponding to the absence of
pharmaceutical residues compared to their pres-
ence. To mitigate this effect and improve learn-
ing, several techniques were employed. First,
class weighting was applied during training,
giving more weight to examples from the mi-
nority class. Secondly, oversampling techniques
were explored to artificially increase the number
of examples in the minority class, while avoid-
ing the generation of exact duplications that
could lead to overfitting. Finally, metrics suit-
able for evaluating performance in the presence
of imbalance, such as the Fl-score and AUC,
were used for a more reliable interpretation of
the results. These measures ensure that predic-
tive models remain sensitive to the detection of
pharmaceutical residues even when they appear
rarely in the dataset.

Presence

Training of 3 Models

Graph Neural Network (GNN)
Message Passing Neural Network (MPNN)

Graph Attention Network (GAT)
Evaluation: Accuracy, ROC-AUC, F1-Score

&

.

Figure 2. End-to-end workflow for molecular graph generation and presence/absence prediction
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Detailed model architecture

Three advanced graph-based deep learning
architectures have been explored: the graph neu-
ral network (GNN), the graph attention network
(GAT), and the message passing neural network
(MPNN). These models allow the propagation
of information between the nodes of the graphs
to learn rich and discriminative molecular repre-
sentations. In the GNN, the representations of the
nodes are updated by combining the information
from immediate neighbors. The GAT introduces
an attention mechanism that allows for differently
weighting the contributions of neighboring nodes
according to their importance. The MPNN ex-
tends this idea by using messages passed between

import pandas as pd
# Load raw dataset from Umweltbundesamt (UBA)
df = pd.read csv("uba pharmaceuticals environment.csv")

woN R

# Keep relevant columns
cols = [

O oo N U BA

"Location™, "SMILES"

(3
[

1
df = df[cols]

A
N R

nodes to capture more complex chemical inter-
actions. Environmental and contextual features
(matrix, therapeutic group, analyte type, season,
and location) were integrated as additional fea-
tures concatenated to the molecular representa-
tions before the final classification layer. This hy-
brid architecture allows the model to effectively
combine chemical and environmental informa-
tion to accurately predict the presence or absence
of pharmaceutical residues in water samples.
Figures 5 and 6 show the exact implementa-
tion of molecular graph construction using RDKit
and the hybrid MPNN architecture that concat-
enates graph-level molecular embeddings with
encoded environmental context features.

"Matrix", "Therapeutic_group", "Analyte type",
"CAS_number", "Concentration", "Sampling perio

# Define binary target: presence (1) vs absence (0)

df["y"] = (df["Concentration™] > @).astype(int)

# Drop rows with critical missing values
df = df.dropna(subset=["Concentration”, "Matrix", "SMILES"])

Figure 3. The Python script in Visual Studio Code used to load the Umweltbundesamt (UBA) dataset, select the
main variables, define the binary target (presence vs absence), and remove records with critical missing values

# Categorical features to encode

cat_features = ["Matrix", "Therapeutic_group”, "Analyte type", “Location"]
enc = OneHotEncoder(handle_unknown="ignore", sparse_output=False)

X _cat = enc.fit_transform(df[cat_features])

# Molecular SMILES kept separately for graph construction

smiles_list = df["SMILES"].tolist()

y = df["y"].values

# Stratified train/val/test split (70/15/15)

X_train, X temp, y train, y temp, smiles_train, smiles_temp = train_test split(
X_cat, y, smiles_list, test size=0.30, stratify=y, random_state=42

)

X val, X test, y val, y test, smiles val, smiles_test = train_test_split(
X _temp, y temp, smiles_temp, test_size=0.50, stratify=y temp, random_state=42

)

Figure 4. The Visual Studio Code script performing one-hot encoding of the contextual variables and the stratified
70/15/15 train/validation/test split according to the presence/absence target
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from rdkit import Chem

def smiles to mol(smiles):

mol = Chem.MolFromSmiles(smiles)

return mol

# Example: convert first few analytes to RDKit molecules
mols = [smiles to mol(s) for s in smiles train[:5]]

mols[@]

Figure 5. The Python code in Visual Studio Code demonstrating how SMILES strings are converted into RDKit
molecular objects and then into PyTorch Geometric graph data structures (nodes = atoms, edges = chemical bonds)

import torch.nn as nn

from torch_geometric.nn import MessagePassing, global mean_pool # type: ignore

class MPNN(nn.Module):

def _ init_ (self, node_dim, context dim):

super().__init_ ()

self.convl = MessagePassing(aggr="add")
self.conv2 = MessagePassing(aggr="add")
self.fc_context = nn.Linear(context dim, 64)
self.fcl = nn.Linear(node_dim + 64, 128)

self.fc2 = nn.Linear(128, 1)

self.dropout = nn.Dropout(p=0.3)

forward(self, data, context):

x, edge_index, batch = data.x, data.edge index, data.batch
# Message passing layers (pseudo-code style)

x = self.convil.propagate(edge_index, x=x)

x = self.conv2.propagate(edge_index, x=x)

x = global_mean_pool(x, batch)

torch.relu(self.fc_context(context))
torch.cat([x, c], dim=1)
torch.relu(self.fci(h))
self.dropout(h)
out = torch.sigmoid(self.fc2(h))
return out

Figure 6. The PyTorch geometric implementation of the MPNN model in Visual Studio Code, illustrating how
molecular graph embeddings are propagated, pooled, and fused with contextual environmental features before
binary classification

Training hyperparameters

The models were trained using the Adam
optimizer with an initial learning rate of 0.001,
chosen to ensure stable convergence while
avoiding oscillations. The batch size was set to
32 samples, allowing a balance between gradi-
ent stability and training speed. Each model
was trained for 200 epochs, with early stopping
based on validation loss to prevent overfitting.
ReLU activation functions were used in all in-
termediate layers, and the sigmoid was applied
to the output layer to generate binary prob-
abilities. To regularize the learning, a dropout
of 0.3 was applied to the fully connected lay-
ers, and batch normalization techniques were
employed to accelerate convergence and sta-
bilize the gradients. These hyperparameters
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were optimized thru cross-validation to maxi-
mize performance metrics on the validation set.
Figure 7 demonstrates the complete training con-
figuration, including class weighting to address
imbalance, dropout (0.3), ReLU activations, and
early stopping based on validation loss to pre-
vent overfitting.

EXPERIMENTAL RESULTS AND
DISCUSSION

Quantitative results

The performance of the three graph-based ar-
chitectures (GNN, MPNN, and GAT) was evalu-
ated using the classical binary classification met-
rics: accuracy, AUC-ROC, and F1-score. These
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import torch.optim as optim

from sklearn.utils.class_weight import compute_class_weight

# Compute class weights for imbalance
class_weights = compute_class_weight(
class_weight="balanced",
classes=[0, 1],
y=y_train

)

class_weights = torch.tensor(class_weights, dtype=torch.float).to(device)

model = MPNN(node_dim=1, context_dim=X_train.shape[1]).to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)

criterion = nn.BCELoss(weight=None) # or custom weighting

num_epochs = 200
best_val_loss = float("inf")

for epoch in range(num_epochs):
model.train()
# training_step(...) # pseudo-code
# compute train_loss, val_loss, metrics

print(f"Epoch {epoch+1}: train_loss={train_loss:.4f}, val loss={val_loss:.4f}") # type: ignore

Figure 7. The training script in Visual Studio Code showing the configuration of the MPNN training loop,
including the Adam optimizer (learning rate = 0.001), batch size of 32, a maximum of 200 epochs, and early
stopping based on validation loss

indicators respectively allow for the evaluation
of overall accuracy, the model’s discriminative
capacity, and the balance between precision and
recall. The results obtained on the training, vali-
dation, and test sets are presented in Tables 1, 2,
and 3. Although all the models demonstrated an
ability to learn relevant molecular representa-
tions, notable differences in terms of generaliza-
tion were observed.

Analyze

On the test set, the MPNN architecture re-
cords the best overall performance (accuracy =
0.928; AUC-ROC = 0.96), confirming its predic-
tive stability and its ability to generalize across
varied aquatic matrices. The GAT model comes
in second place (accuracy = 0.903; AUC-ROC =
0.94) and stands out for its attention mechanism,
which offers superior interpretability by iden-
tifying the most influential substructures in the
prediction.

The GNN shows decent performance but
remains inferior to the other two architectures
(accuracy = 0.842), which suggests that more
sophisticated message propagation mechanisms
are necessary to adequately model the behavior
of pharmaceutical molecules in the aquatic en-
vironment. Overall, these results demonstrate
that message passing architectures particularly
MPNN are particularly well-suited for predicting
the presence of pharmaceutical residues in water
samples (Table 4).

Visual analysis

The analysis of the confusion matrices pre-
sented in Figure 8 allows for a detailed com-
parison of the performance of the three graph-
based architectures for the binary classifica-
tion of “Presence / Absence” of pharmaceutical
residues. The MPNN model shows the highest
performance, with a significant number of true

Table 1. Performance on the training set (presence of
pharmaceutical products)

Model Accuracy ROC-AUC F1-score
GNN 0.901 0.92 0.89
MPNN 0.947 0.97 0.94
GAT 0.931 0.96 0.92

Table 2. Performance on the validation set (presence of
pharmaceutical products)

Model Accuracy ROC-AUC F1-score
GNN 0.873 0.90 0.86

MPNN 0.917 0.95 0.91
GAT 0.904 0.94 0.90

Table 3. Performance on the test set (presence of
pharmaceutical products)

Model Accuracy ROC-AUC F1-score
GNN 0.842 0.89 0.84

MPNN 0.928 0.96 0.92
GAT 0.903 0.94 0.90
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Table 4. Comparison with recent state-of-the-art approaches for pharmaceutical occurrence prediction

Study / Modele Type of task Modele / Algo Accuracy | AUC-ROC Notes
Binary classification of Combines molecular graphs
This study pharm residues in water MPNN 0.928 0.96 + environmental features
using graph + metadata (novel)

This study — GAT 0.903 0.94 | Strong performance from
attention model

This study — GNN 0.842 0.89 Baseline Graphic NN
ML model predicts aquatic

Bioaccumulation | Ecotoxicity / predictive XGBoost / . ~0.90 contaminant behavior;

ML Study classification RandomForest / SVM ’ performance close to your
ROC-AUC (~0.90) ¢2

N . Most studies achieve “good
Drlnklng water Water quallty . RandomForest, but variable” performance
contaminants contaminants (binary . . 0.67-0.94 | 0.72-0.92 -
. GradientBoosting, etc depending on dataset and

review threshold models) . 33
contaminant ¢

Classification Groundwater/river (not always Some works achieve ACC

of water quality uality classification SVM/ RF / ANN ~0.90 re orted); > 0.90 on water quality

wal quality P classification tasks ¢4

positives (TP = 399) and true negatives (TN =
556), as well as a low rate of false negatives (FN
= 37). This configuration results in an accuracy of
0.90 and a recall of 0.92, indicating an excellent
ability to correctly detect actually contaminated
samples. The low number of false negatives is
particularly crucial in an environmental context,
as it limits the risk of not identifying a potentially
polluted sample. The GAT model comes in sec-
ond place, with a balanced distribution between
true positives (394) and true negatives (550). Its
overall performance (accuracy = 0.89, recall =
0.90) confirms its reliability, while its attention
mechanism remains a major asset for interpret-
ability, facilitating the identification of influen-
tial molecular substructures in the classification.
The GNN model, although effective, has more
pronounced limitations with a higher number
of false negatives (FN = 102), which affects the
recall (0.77) and thus its ability to identify truly

GNN Model

Abanne ALEENT

Muclual

Actual

Present Fresers

Absent Fbsent

Frasent
Predicted

Accuracy: 0.E2
Racall- 0 77

Confusion Matrices for Presence/Absence Prediction
MFNH Model

Accuracy: 0.90
Reeall 0192

positive cases. Its overall accuracy (0.82) is lower
than the other two architectures, suggesting

A less discriminative molecular
representation

Overall, the results confirm the superior-
ity of the MPNN model, which offers the best
compromise between overall accuracy and
sensitivity. The GAT model, slightly less per-
formant, nevertheless remains an interesting
alternative due to its explanatory potential.
Finally, the GNN model appears less suit-
able for this task, but remains competitive for
analyzes where model simplicity is a priority.
The confusion matrices in Figure 8 were gener-
ated directly from the model predictions using
scikit-learn, showing MPNN’s superior perfor-
mance (TP=399, TN=556, FN=37) and low false
negatives critical for environmental monitoring.

GAT Madeal

SesenL
Predicied

Fresent Fresent

Predicied

Accuracy: 0.89
Rarall 0G0

Figure 8. Confusion matrices of GNN, MPNN, and GAT models for predicting the presence
of pharmaceutical residues
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Discussion

Our MPNN model (accuracy = 0.928; AUC-
ROC = 0.96) meets, or even exceeds, the per-
formances reported in recent literature, notably
those of Chemprop (Evangelista et al., 2025),
which confirms its robustness for predicting
the occurrence of pharmaceutical residues in
water. This high performance shows the impor-
tance of integrating atomic characteristics and
chemical bonds into the message propagation
mechanism. From a biological and ecological
aspect, its low false-negative rate facilitates the
detection of potentially contaminated samples,
supporting early identification of water affected
by pharmaceutical residues. This capacity is
critical for minimizing chronic exposure risks
to aquatic creatures and aiding environmental
managers in prioritizing monitoring and reme-
diation operations.

The GAT model, slightly less performant,
nevertheless offers a significant advantage: its
attention mechanism allows for the identifica-
tion of the key molecular substructures in the
final decision, which is a major asset for ex-
planatory analyzes and regulatory applications.
Compared to other recent methods, such as deep-
FPlearn+ and GraphADT, our models—par-
ticularly MPNN and GAT—are competitively
positioned, reinforcing the relevance of graph
neural networks for environmental monitoring
and the detection of emerging contaminants.
In summary, the MPNN appears as the most ef-
fective architecture for this task, while the GAT
represents a preferred alternative when model
interpretability is essential. These results confirm
the significant potential of graph-based models
for the prediction and management of environ-
mental risks related to pharmaceuticals.

CONCLUSIONS

This study emphasizes the tremendous po-
tential of graph neural networks for predict-
ing the presence of pharmaceutical residues in
aquatic systems. Using a heterogeneous dataset
from the Umweltbundesamt (UBA, Germany),
three architectures GNN, MPNN, and GAT
were implemented and carefully compared. The
MPNN model demonstrated the highest overall
performance and generalization across different
water matrices, while the GAT model offered

valuable interpretability through its attention
mechanism, and the standard GNN remained
competitive, confirming the relevance of graph-
based approaches for emerging contaminants.
By minimizing reliance on costly and sophisti-
cated chemical studies, these models can enhance
environmental monitoring, optimize sampling
tactics, and support regulatory decision-making.
However, factors such as class imbalance, geo-
graphical variability, and the absence of knowl-
edge on metabolites or transformation products
may influence model performance. Future stud-
ies could use finer spatiotemporal data, integrate
different sources like hydrology, pharmaceutical
usage, and urban characteristics, or develop mul-
timodal models that link molecular graphs with
environmental descriptors.

Importantly, by enabling early prediction of
pharmaceutical occurrence, this approach may
help to the protection of aquatic ecosystems and
decrease biological concerns associated with
chronic pharmaceutical exposure. Overall, this
research reveals that GNN-based frameworks
constitute a promising, efficient, and ecologically
relevant method for furthering the management
of new pollutants and maintaining water quality.
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