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ABSTRACT

Circular economy (CE) has emerged as a sustainable policy framework adopted by many countries to reduce waste
generation through the application of the 5R principles: reuse, recycle, recovery, reclamation, and reduce. This
mini-review summarizes recent studies on the application of circular economy approaches in wastewater treat-
ment, highlighting their potential contributions to sustainable development through resource conservation, waste
minimization, and pollution reduction. CE-based wastewater treatment systems can also support climate change
mitigation by improving energy efficiency and enabling energy recovery, while contributing to ecosystem protec-
tion through reduced pollutant discharge and the promotion of closed-loop material flows. This review discusses
representative circular economy models for recovering water, valuable materials, and energy from wastewater,
and outlines key strategies to address current limitations while strengthening opportunities for implementation.
Overall, the integration of circular economy principles into wastewater treatment is emphasized as a promising

pathway toward more sustainable and resilient water management systems.

Keywords: circular economy, sustainability, wastewater treatment, resource recovery.

INTRODUCTION

Water constitutes a critical resource under-
pinning a wide spectrum of human activities,
including domestic consumption, agricultural
irrigation, industrial manufacturing, and energy
production. Despite these advancements, the
world is facing an escalating water scarcity cri-
sis. Estimates indicate that by 2025, nearly two-
thirds of the global population will encounter
water stress, and around 1.8 billion people will
live under conditions of severe water scarcity
(Boubakri, 2024). Exacerbating this issue, over
80% of wastewater is released into the environ-
ment without proper treatment, and in many
developing regions, this figure rises to more
than 95%. Untreated wastewater represents a

significant source of environmental degradation,
contributing to pollution, the spread of aquatic
diseases, and an increase in emissions of green-
house gas (Palanisami, 2024).

Water scarcity and pollution have emerged
as critical global challenges, prompting gov-
ernments, industries, and other stakeholders
to adopt more sustainable approaches to water
management. Consequently, the development
of effective and sustainable water manage-
ment practices has gained strategic importance
worldwide, fostering innovation across multiple
water-related sectors. These efforts are particu-
larly relevant in wastewater management and
treatment, where reducing the degradation of
aquatic ecosystems and enhancing environmen-
tal sustainability are primary objectives. The
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Sustainable Development Goals emphasize the
need to ensure access to water and sanitation
through integrated and effective water resource
management, encompassing the entire hydrolog-
ical cycle, from water conservation and efficient
use to wastewater treatment and ecosystem pro-
tection. Within this broader framework, the CE
has been increasingly recognized as a promis-
ing approach for addressing environmental chal-
lenges and supporting sustainable development.
The core principles of the CE focus on redesign-
ing systems and processes to eliminate waste
and pollution, maintain materials and products
in continuous use, and promote the regeneration
of natural ecosystems.

Wastewater treatment plants (WWTPs) have
considerable potential to support the transition
toward a circular economy. In addition to provid-
ing an alternative source of water, these facilities
can serve as hubs for the recovery of valuable
resources, including energy and nutrients. For
instance, nutrients contained in wastewater can
be recovered and reused in agricultural applica-
tions, thereby reducing reliance on synthetic fer-
tilizers. The circular economy offers a practical
framework for redesigning systems and processes
in line with sustainability principles. This para-
digm represents a fundamental shift in resource
management, moving away from the traditional
take-make-dispose model toward more regenera-
tive and sustainable systems. Within this context,
wastewater recycling plays a crucial role in im-
proving resource efficiency and unlocking the full
potential of circular economy strategies in water
and wastewater management.

Accordingly, this mini-review aims to syn-
thesize and discuss the existing literature on
the interconnections between the circular econ-
omy, wastewater treatment, and sustainability.
Specifically, it explores the role of the circular
economy as a strategic framework for enhancing
sustainability in wastewater treatment and sup-
porting progress toward the sustainable develop-
ment goals (SDGs). Growing concerns related
to sustainability and resource efficiency have
intensified global interest in circular economy
approaches within the wastewater sector. In this
context, the review highlights representative
circular economy models for resource manage-
ment that focus on waste minimization, material
recovery and recycling, process efficiency, and
the creation of economic value in industrial and
urban water systems.
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CIRCULAR ECONOMY AS APATHTO
SUSTAINABLE DEVELOPMENT

The CE offers an alternative development
paradigm aimed at minimizing waste generation
while creating high-value products through a life-
cycle perspective on goods and services (Bakir
and Aral, 2025). Rather than focusing solely on
end-of-life waste management, CE emphasizes
systemic changes in production and consumption
patterns to improve resource efficiency and envi-
ronmental performance. Recent studies indicate
that circular economy principles can be adapted
across different regional and sectoral contexts.
For example, in Central Asia, including Kazakh-
stan, circular business models have been pro-
posed for integration into the construction value
chain, supported by regulatory frameworks, in-
frastructure investment, collaborative platforms,
and pilot initiatives.

Growing resource overconsumption and
accelerating environmental degradation have
prompted many countries, particularly in Europe,
to transition from the traditional linear economy
model toward circular economy approaches (An-
droniceanu et al., 2021; Bakir and Aral, 2025).
This transition is widely recognized as a means
to reduce environmental pressures, enhance raw
material security, improve competitiveness, and
stimulate innovation, economic growth, and em-
ployment. In addition, consumers are expected
to benefit from increased access to more sustain-
able and innovative products, contributing to im-
proved quality of life and long-term economic
savings. Consequently, the circular economy is
increasingly viewed as a strategic pathway to-
ward sustainable development, supporting na-
tional well-being and raising overall societal liv-
ing standards.

Sustainable development aims to balance so-
cial equity, environmental protection, and eco-
nomic prosperity. These three interrelated pillars,
including environmental sustainability, social
inclusiveness, and economic viability, form the
foundation of contemporary sustainability frame-
works (Eelager et al., 2025). The United Nations
Sustainable Development Goals (SDGS), illus-
trated in Figure 1, provide an integrated frame-
work encompassing 17 interconnected goals
that address multiple dimensions of sustainabil-
ity. Many of these goals align closely with cir-
cular economy principles, particularly in rela-
tion to resource efficiency, waste reduction, and
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Figure 1. Integrated SDGs Framework for Sustainable Development (SDGs).
Redrawn and modified by the authors

sustainable management practices, thereby rein-
forcing the role of the circular economy as a key
enabler of sustainable development.

Building on the role of the circular economy
as a pathway to sustainable development, recent
studies increasingly frame CE as a transformative
paradigm for sustainable production and consump-
tion. By prioritizing waste prevention and resource
efficiency across the entire life cycle of products
and services, CE contributes directly to environ-
mental protection and broader sustainability objec-
tives. Several conceptual frameworks have been
proposed to operationalize circular economy prin-
ciples in waste management systems. As illustrated
in Figure 2 (Monfared et al., 2025), these frame-
works commonly distinguish between strategies
focused on intelligent production and use, product
and component life extension, and material recov-
ery. Together, these stages highlight how circular
economy principles support the achievement of
the Sustainable Development Goals through inte-
grated resource management.

Complementary frameworks emphasize the
application of the 5R principles, including reduce,
reuse, recycle, recovery, and reclamation as key

operational strategies for circular economy imple-
mentation (Aslan et al., 2025; Sharma et al., 2020),
as shown in Figure 3. These principles illustrate
pathways for transforming waste into valuable
resources, including energy and materials. Figure
4 synthesizes the operational integration of circu-
lar economy principles within wastewater treat-
ment systems. The figure illustrates wastewater
treatment plants as central nodes in a closed-loop
system, where wastewater generation and collec-
tion are followed by sequential treatment stages
(primary, secondary, and advanced treatment),
enabling the recovery of valuable resources such
as reclaimed water, nutrients (nitrogen and phos-
phorus), and energy (biogas and heat). These re-
covered resources are subsequently reused across
agricultural, industrial, and urban non-potable ap-
plications, thereby reducing dependence on virgin
resources and minimizing environmental burdens.
The feedback loop depicted in the figure empha-
sizes the role of reuse and recycling in decreasing
residual waste generation and enhancing envi-
ronmental protection, ultimately reinforcing the
circularity of wastewater management systems.
In this context, wastewater treatment shifts from
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a pollution control function toward a resource-
oriented and sustainability -driven system aligned
with circular economy objectives.

Figure 5 provides a strategic perspective
on the relationship between circular economy
implementation and sustainability outcomes.
While sustainability represents the overarching
objective of long-term environmental, social,
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and economic balance, the circular economy
functions as an enabling mechanism that op-
erationalizes this objective through efficient re-
source management and system integration. The
figure highlights the alignment between circular
economy practices and the SDGs, emphasiz-
ing that progress toward these goals depends
not only on technological solutions but also on
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17 sustainable development goals (SDGs) of sustainability

and the 7 pillars of the circular economy for a greener future

governance structures, policy frameworks, and communities to scale up circular strategies and
multi-stakeholder engagement. In particular, translate localized circular initiatives, such as

SDG 17 underscores the importance

of part- circular wastewater management, into broader

nerships among governments, industries, and sustainability impacts (Eelager et al., 2025).
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OVERVIEW OF THE APPLICATION
OF CIRCULAR ECONOMY FORTHE
WASTEWATER TREATMENT PLAN

Role of circular economy toward wastewater
treatment plants to drive sustainable
development

The CE is increasingly recognized as a suit-
able framework for transforming WWTPs from
end-of-pipe facilities into resource recovery
hubs that contribute to sustainable development.
Within this context, wastewater treatment plays
a strategic role by enabling the recovery of wa-
ter, nutrients, and energy, thereby reducing en-
vironmental pressures and enhancing resource
efficiency. By prioritizing resource reclamation,
WWTPs can be better integrated into surround-
ing natural and socio-economic systems, sup-
porting a transition toward more sustainable wa-
ter management practices.

Decentralized wastewater treatment systems
have attracted growing attention as a practical ap-
proach for implementing CE principles at the local
scale. Compared with centralized infrastructure,
decentralized systems located closer to wastewa-
ter generation points can reduce energy and water
demands associated with transport while facilitat-
ing the reuse of treated effluent within communi-
ties. This localized integration supports the for-
mation of closed water loops, decreases reliance
on conventional freshwater sources, and enhances
system resilience, particularly in water-scarce re-
gions. Reclaimed wastewater thus represents a vi-
able alternative water resource that can alleviate
pressure on natural water bodies and contribute to
their long-term protection (Bermejo-Campos and
Garcia-Avila, 2025).

From a circular economy perspective,
WWTPs also serve as platforms for recover-
ing valuable materials embedded in wastewa-
ter streams. Sewage sludge contains significant
quantities of nitrogen, phosphorus, and organic
matter, which can be transformed into fertiliz-
ers, soil conditioners, or energy carriers, there-
by generating both environmental and economic
benefits (Hernandez-Chover et al., 2023). Water
reclamation processes enable treated effluent
to be reused for non-potable purposes such as
irrigation, industrial operations, and urban ap-
plications, while nutrient recovery technolo-
gies facilitate the reintegration of essential ele-
ments into agricultural and industrial cycles. In
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parallel, the conversion of organic matter into
biogas through anaerobic digestion contributes
to renewable energy production and reduces re-
liance on fossil fuels.

Advances in treatment and recovery technolo-
gies have further strengthened the role of WWTPs
within circular economy systems. Membrane-
based processes, including reverse osmosis and
nanofiltration, have expanded the potential for
producing reclaimed water of suitable quality for
diverse applications. At the same time, emerging
nutrient recovery and energy recovery technolo-
gies continue to improve the efficiency and feasi-
bility of resource extraction from wastewater. Col-
lectively, these developments reduce dependence
on finite resources and mitigate the environmental
impacts associated with wastewater discharge.

Practical implementations reported in the lit-
erature demonstrate the feasibility of applying
CE principles in wastewater management. For
example, large-scale water reuse initiatives and
energy recovery programs illustrate how WWTPs
can simultaneously address water scarcity, ener-
gy demand, and environmental protection. Such
examples highlight the broader applicability of
circular strategies rather than serving as isolated
case-specific solutions. For example, Practical
studies offer concrete demonstrations of how
wastewater treatment supports circular economy
principles. Singapore’s NEWater initiative is a
notable example, showcasing effective resource
recovery and the large-scale production of high-
quality reclaimed water. By purifying wastewater
to ultra-clean standards, the project provides re-
cycled water for both industrial applications and
drinking purposes. Similarly, the Netherlands’
Energy Factory converts wastewater into biogas
via anaerobic digestion, producing renewable en-
ergy that supplies the surrounding community.

Looking ahead, wastewater treatment is ex-
pected to play an increasingly important role in
advancing circular economy objectives. Ongoing
technological innovation, growing awareness of
resource efficiency, and supportive regulatory
frameworks are likely to accelerate the adoption
of circular practices in wastewater management.
As a result, WWTPs are poised to make a more
substantial contribution to sustainable resource
management and the broader goals of sustain-
able development. As conceptually summarized
in Figure 6, the integration of circular economy
principles into wastewater treatment gener-
ates multiple co-benefits across environmental,
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Figure 6. Drivers of the circular economy approach in wastewater management

social, health, and economic dimensions, rein-
forcing the strategic importance of wastewater
management within circular and sustainable de-
velopment pathways.

Opportunities and challenges of the circular
economy in wastewater treatment

While previous section conceptualizes the
circular economy as a key enabling framework
for achieving sustainability and the SDGs, its
practical realization ultimately depends on how
circular principles are operationalized within spe-
cific sectors. Among these, wastewater treatment
represents a particularly critical domain, where
circular strategies can simultaneously address
environmental protection, resource recovery,
and system resilience. In this section, we exam-
ines the opportunities and challenges associated
with implementing circular economy principles
in wastewater treatment systems, with a focus on
technological pathways, systemic limitations, and
emerging research gaps.

Wastewater treatment constitutes a pivotal
opportunity for advancing CE implementation,
as it enables the recovery and reuse of valu-
able resources embedded within waste streams.

Traditionally perceived primarily as a disposal
challenge, wastewater systems have undergone
a conceptual shift driven by technological ad-
vancements and innovative treatment processes.
Increasingly, wastewater is recognized as a strate-
gic reservoir of recoverable resources, including
water, energy, nutrients, and other value-added
compounds. Harnessing these resources supports
sustainable development objectives, enhances re-
source efficiency, and contributes to the develop-
ment of more resilient and adaptive environmen-
tal systems (Bermejo-Campos and Garcia-Avila,
2025; Cairone et al., 2024).

Within this context, the circular economy-ori-
ented resource recovery facility (RRF) concept,
illustrated in Figure 7, represents a representative
model for operationalizing CE principles in waste-
water treatment. Beyond conventional contami-
nant removal from domestic, industrial, and agri-
cultural effluents, RRFs emphasize the integrated
recovery of clean water, energy, and nutrients,
thereby transforming wastewater treatment plants
into multifunctional hubs for resource generation
(Bohra et al., 2022; Juzni¢-Zonta et al., 2022).
Existing studies indicate that embedding CE prin-
ciples into wastewater treatment systems can im-
prove operational efficiency while simultaneously
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delivering environmental and economic benefits
(Hernandez-Chover et al., 2023).

Empirical evidence further demonstrates the
feasibility of circular approaches in practice.
For instance, reclaimed water currently supplies
approximately 40% of Singapore’s total water
demand, with projections indicating continued
growth in the future (Kog, 2020). Technologi-
cal innovations, particularly the integrated ap-
plication of membrane-based processes such as
microfiltration, ultrafiltration, nanofiltration, and
reverse osmosis, have played a central role in
enabling high-quality water reuse. By combin-
ing complementary treatment processes, these
technologies help overcome the limitations of
individual units, reduce energy consumption, and
enhance overall treatment efficiency (Shehata et
al., 2023). Such advances underscore the techni-
cal viability of CE-driven wastewater systems.

Despite these opportunities, significant chal-
lenges remain in translating circular economy
concepts into system-wide and scalable waste-
water management solutions. Figure 8 presents
a bibliometric network analysis that reveals three
major thematic clusters in CE-related wastewater
research. The first cluster (yellow) focuses on pol-
lution control, water resource management, and
environmental-economic interactions, encompass-
ing keywords such as adsorption, climate change,
biomass, and water pollution. The second cluster
(green) centers on treatment technologies and as-
sessment tools, including anaerobic digestion, nu-
trient recovery, and life cycle assessment. The third
cluster (blue) highlights core conceptual themes,
including circular economy, sustainable develop-
ment, and wastewater treatment, reflecting the the-
oretical grounding of CE principles within the field.

However, the network structure also ex-
poses critical systemic gaps. A pronounced

[ ™\ A . G % .
““I&* . . . ‘\!/ Clean water Reer:qeev'vs;)le
¥ N o Value-added _—
* - resources
R 0
X Biofertilizer
\_ y L )

techno-centric bias is evident, as technological
solutions such as adsorption and anaerobic diges-
tion dominate the research landscape, while socio-
institutional dimensions receive comparatively
limited attention. Concepts related to governance,
policy frameworks, business models, system inte-
gration, and stakeholder engagement are weakly
represented, suggesting that technological invest-
ments have outpaced the development of enabling
institutional and social mechanisms. Moreover,
explicit linkages between CE practices and SDG
implementation, particularly water-related goals
such as SDG 6 and broader water security ob-
jectives, remain limited. The weak connectiv-
ity between sustainability-oriented concepts (blue
cluster) and climate-change-related terms (yellow
cluster) further indicates a fragmented approach to
addressing interlinked sustainability challenges.
These gaps pose substantial barriers to the
scalability and long-term effectiveness of circular
economy-based wastewater solutions. While nu-
trient recovery and water resource management
are frequently addressed, their integration with
socioeconomic factors, rural contexts, and behav-
ioral change dynamics remains insufficient. As
summarized in Table 1, the application of CE prin-
ciples in wastewater treatment offers consider-
able opportunities but is constrained by technical,
economic, institutional, and governance-related
challenges. Addressing these barriers is essen-
tial for accelerating adoption and enhancing the
overall performance of circular wastewater sys-
tems (Bermejo-Campos and Garcia-Avila, 2025;
Jha and Dubey, 2024). Collaboration and active
stakeholder participation, therefore, emerge as
critical enablers for advancing CE implementa-
tion in wastewater treatment plants (Moshawih
et al., 2025). Effective circular transitions require
coordinated action among government agencies,

Resource Recovery Facility

Figure 7. Concept towarding sustainable resource recovery facility (Cairone et al., 2024),
copyright permission from the publisher
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industrial operators, and local communities to co-
design sustainable management strategies. Such
partnerships facilitate technological uptake, sup-
port the development of enabling policies, and
strengthen monitoring and enforcement mecha-
nisms. Nevertheless, divergent interests, limited
financial resources, and institutional fragmenta-
tion continue to hinder collaboration, underscor-
ing the need for integrated governance frame-
works and aligned stakeholder objectives.

MODEL OF THE CIRCULAR ECONOMY
APPLIED IN WASTEWATER TREATMENT
PLANT

The model of the circular economy in a
wastewater treatment plant in Vietham

In Vietnam, wastewater reuse remains un-
derdeveloped despite its significant potential as
a secondary resource within a circular economy
framework. Limited regulatory guidance, insuf-
ficient monitoring mechanisms, and the absence

of wastewater reuse considerations during proj-
ect planning and appraisal have constrained
broader implementation (Hoang Thi Thu
Huong*, 2023). Nevertheless, several pioneer-
ing initiatives illustrate how circular economy
principles can be practically embedded in waste-
water treatment systems.

One representative example is the waste-
water reuse model implemented at a cassava
starch production facility in Tay Ninh Province,
Vietnam, as illustrated in Figure 9. This model
demonstrates how industrial wastewater can be
reintegrated into agricultural production systems
through controlled reuse pathways. Compared
with a baseline scenario, the adoption of waste-
water reuse resulted in an estimated 40% reduc-
tion in groundwater abstraction, highlighting its
potential contribution to local water security.
Treated effluent is stored in biological ponds and
subsequently reused for agricultural irrigation
after dilution to ensure compatibility with crop
requirements. In this context, reclaimed waste-
water functions not only as an alternative water
source but also as a carrier of nutrients, thereby
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Table 1. Opportunities and challenges associated with resource recovery processes within wastewater treatment

systems
Process Input stream Main product Opportunities Challenges References
. . Excess sludge
Conventional Effective removal of eneration: (Brucculeri et al
activated Sludge Wastewater Treated water organics; Can treat gene f v
e Sensitive to the 2005)
process varieties of wastewater | .
influent flow rate
Effective for
Treated decentralized . Excess sludge (Bermejo-
. . wastewater treatment; s
Sequencing batch water; o generation; Campos and
Wastewater . . Ability to handle . : .
reactors Bio-gas (if ; .| Complex Operation Garcia-Avila,
. extremely high organic
anaerobic) . and Control 2025)
and hydraulic shock
loads
Reduced sludge — (Bermejo-
. . . ; Membrane fouling;
Membrane High-quality | generation; Effective for | .. . Campos and
; Wastewater ) High capital cost of : )
bioreactors treated water decentralized . . Garcia-Avila,
installation
wastewater treatment 2025)
Treated Process control;
. Wastewater, Renewable energy A ! .
Anaerobic . water, o Sensitivity to toxic (Uddin and
) . Microalgae, . production; Reduced : -
digestion Sewaae sludae Biogas, sludge generation substances; Wright, 2023)
g 9 Digestate 9¢ g Nutrient imbalance
Treated Low energy Efficiency varies
Constructed Wastewater water: requirements; Cost- with the climate (Parde et al.,
wetlands ) ’ effective decentralized conditions and 2021)
Biomass
wastewater treatment | seasonal changes
Harvesting and
Algal-mediated Treated Carbon sequestration; dewatering of
) ) ) (Bhatt et al.,
wastewater Wastewater water; Renewable energy algal biomass;
. ) - . 2022)
treatment Microalgae production Sensitive to certain
contaminants
Treated Carbon sequestration;
Bioelectrochemical water; Renewable energy Scaling-up; (Ghangrekar et
Wastewater . . L .
systems Bioenergy; production; Low power density al., 2022)
Biochemicals Environment friendly
Effec_tlve removal of_ Safety
recalcitrant pollutants; : L
T considerations; .
Advanced Minimization of harmful . (Saulco et al.,
S Wastewater Treated water . - High energy
oxidation process byproducts; Versatility el 2021)
- . consumption;
i.e. non-selective Scaling-u
oxidation g-up
Comprehensive Complexity;
Hybrid wastewater treatment; Resource Maintenance; (Djandja et al.,
Wastewater Treated water X . o
treatment recovery; Improved Site-specific 2023)
treatment efficiency consideration
Carbon sequestration; Economic viability;
Hydrothermal Algae; Sewage . : q ' Scaling-up; (Djandja et al.,
A Biochar Biofuel; Waste :
carbonization sludge S Environmental 2023)
valorisation .
impact assessment
I - - - (Mandari and
Transesterification Algal lipids Biodiesel Renewable energy Economic viability Devarai, 2022)

reducing dependence on synthetic fertilizers and
supporting resource circularity (Nguyen Thanh
Nam, 2020). Beyond industrial settings, treated
urban domestic wastewater can also be reused for
a range of non-potable applications, including ir-
rigation, street cleaning, toilet flushing, fire-fight-
ing water storage, and the rehabilitation of urban
rivers and lakes, as conceptually illustrated in
Figure 10. In addition, managed aquifer recharge
using appropriately treated wastewater repre-
sents a strategic option to mitigate groundwater
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depletion, land subsidence, and saltwater intru-
sion in urban areas. However, despite these tech-
nical possibilities, the large-scale adoption of
wastewater reuse remains constrained by socio-
economic and institutional barriers. Public accep-
tance is limited due to concerns regarding health
risks and environmental safety, while technical
complexity and cost considerations further hinder
implementation (Tran Duc Ha, 2023). These chal-
lenges underscore the need for supportive regula-
tory frameworks, risk communication strategies,
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Figure 9. Wastewater reuse of Xuan Hong cassava starch production factory

and integrated planning approaches to enable the
broader application of circular economy models
in wastewater management.

The circular economy model in wastewater
treatment in the world

Globally, CE models in wastewater treatment
have evolved from disposal-oriented systems to-
ward integrated frameworks that emphasize wa-
ter reuse, resource recovery, and value creation.
Rather than representing isolated national prac-
tices, these models reflect transferable approaches
that combine technological innovation, regulatory
support, and risk management to enhance water
security and sustainability under increasing pres-
sures from population growth and climate change.

One dominant circular economy pathway at
the global scale is the implementation of water
reuse-driven wastewater management models.
Countries such as the United States and Singapore
have progressively developed advanced treatment
technologies and regulatory frameworks that en-
able the safe reuse of treated wastewater for non-
potable and, in some cases, potable applications.
These approaches demonstrate how wastewater
can be repositioned as a strategic water resource,

provided that stringent quality control and moni-
toring mechanisms are in place to safeguard pub-
lic health and environmental integrity (Bermejo-
Campos and Garcia-Avila, 2025).

The wastewater management model in the
United States, illustrated in Figure 11, exemplifies
a large-scale, decentralized-to-centralized reuse
framework in which treated municipal wastewa-
ter is reused for urban activities, agricultural irri-
gation, and environmental enhancement. Recent
regulatory developments, particularly in water-
stressed regions such as California, further high-
light the transition toward potable water reuse as
a climate adaptation strategy. By integrating ad-
vanced treatment and regulatory oversight, this
model reduces reliance on conventional freshwa-
ter sources and strengthens long-term water resil-
ience under drought conditions (Nga, 2023).

Singapore represents a highly centralized and
technologically advanced circular economy model
for wastewater reuse, as shown in Figure 12. Fac-
ing severe water scarcity, the country has invested
extensively in research and development to estab-
lish an integrated water management system in
which reclaimed wastewater, known as NEWater,
plays a critical role. Advanced membrane filtration
and disinfection processes enable the production of
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high-quality reclaimed water that is primarily sup-
plied to industrial users and strategically blended
into potable water reservoirs. This model demon-
strates how strong governance, public communica-
tion, and technological reliability can collectively
support the acceptance and scalability of potable
water reuse. Reclaimed water currently meets 40%
of Singapore’s water demand and is expected to
increase to 55% by 2060, according to the national
water agency. While most reclaimed water is used
for industrial purposes, a portion is blended into
the potable water supply through the country’s res-
ervoirs, serving its population of 5.7 million. The
final product, known as NEWater, is primarily sup-
plied to industrial facilities and is also conveyed to
artificial reservoirs to augment the potable water
supply during dry seasons. The reclaimed water
undergoes an additional round of treatment before
being distributed to households (Phuong, 2023).
Beyond water reuse, another important
global circular economy pathway in wastewater
treatment focuses on the valorization of sewage
sludge and wastewater-derived microalgae as bio-
resources. As illustrated in Figure 13, these bio-
mass streams can be processed through biorefin-
ery-based approaches to generate a wide range of
value-added products, including bioenergy carri-
ers, biopolymers, enzymes, and soil conditioners.
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Sewage sludge, in particular, contains recover-
able resources such as biochar, methane, bio-oil,
and biohydrogen, which contribute to renewable
energy production, carbon sequestration, and im-
proved soil quality (Capodaglio, 2023). Anaero-
bic digestion further enables the generation of
polyhydroxyalkanoates (PHAs) and volatile fatty
acids, supporting the production of environmen-
tally sustainable bioplastics (Semaha et al., 2023).
Converting sludge into construction materials
further supports circular economy goals, provid-
ing a sustainable outlet for sludge management
while ensuring compliance with safety standards.
Recovering valuable resources from wastewater,
sewage sludge, and microalgae provides an inte-
grated framework for generating renewable mate-
rials while simultaneously delivering significant
environmental benefits (Gherghel et al., 2019).

In addition to bioenergy and bioproduct re-
covery, wastewater-derived materials can be
incorporated into construction materials, adsor-
bents, and functional components for wastewa-
ter treatment systems, as illustrated in Figure 14.
Biochar produced from sludge and other waste
streams has gained increasing attention for its
application as an adsorbent, membrane material,
and electrode component in advanced treatment
technologies (Leong et al., 2021). Furthermore,
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the reuse of dried sludge-derived materials in bio-
logical treatment processes has shown potential
for enhancing system performance during start-
up phases (Sellamuthu et al., 2021). However, the
large-scale implementation of material valoriza-
tion pathways requires a comprehensive assess-
ment of treatment efficiency, contaminant accu-
mulation, economic feasibility, and environmen-
tal impacts to ensure safe and sustainable reuse
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(Baskar et al., 2022; Maged et al., 2023). Overall,
these global circular economy models demon-
strate that wastewater treatment can function as
a multifunctional platform for water reuse, bio-
resource recovery, and material valorization. De-
spite differences in scale, technological maturity,
and regulatory contexts, successful implementa-
tion consistently depends on the integration of
advanced treatment technologies with supportive



Ecological Engineering & Environmental Technology 2026, 27(2), 139-155

Waste water

3

.

Cementitious Materials

h

|

b, b

b %
““ ‘ “ P

: Treated Water
A

Biofuels Soil Amendment

Figure 14. Production process of valuable materials from wastewater treatment plant (Hossain et al., 2020),
copyright permission from the publisher

governance frameworks, economic viability, and
public acceptance. These shared characteristics
provide valuable insights for the broader adop-
tion of circular economy principles in wastewater
management and inform the concluding discus-
sion on key enablers, remaining challenges, and
future research directions.

CONCLUSIONS

A systematic assessment conducted in this
study demonstrates that adopting a circular
economy (CE) framework in wastewater treat-
ment plants has strong potential to reshape con-
ventional wastewater management practices.
Wastewater can be regarded as a valuable source
of water, energy, and recoverable materials that
may be reintegrated into multiple sectors. In par-
ticular, the recovery of nitrogen and phosphorus
not only provides essential inputs for agricultural
fertilizers but also mitigates the unsustainable ex-
traction of finite natural resources. The analysis
reveals notable gaps related to governance, pub-
lic policy, social engagement, and business model
development, while technological solutions con-
tinue to receive disproportionate attention. This

imbalance highlights the necessity of interdis-
ciplinary collaboration to address the complex
technical, social, and environmental dimensions
of wastewater treatment systems. Integrative cir-
cular economy approaches can generate environ-
mental benefits through pollution mitigation and
resource recovery, economic value through the
production of value-added by-products, and so-
cial benefits by supporting sustainable practices
and enhancing community well-being. Overall,
this review provides consolidated insights for in-
frastructure managers and policymakers, empha-
sizing the importance of rethinking wastewater
treatment systems through a circular economy
perspective. With existing technological capa-
bilities, wastewater treatment plants can achieve
higher-quality effluent while increasing resource
recovery, thereby supporting the sustainability of
urban water cycles and contributing to broader
societal well-being.
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