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INTRODUCTION

Human intervention has an impact on dis-
rupting the balance of global natural ecosystems, 
including climate change (World Economic Fo-
rum, 2023). The greenhouse effect of increasing 
emissions and deforestation for various purposes 
is one of the causes of climate change resulting 
from human activities (Ali et al., 2014; Chancel 
et al., 2023; Gulev et al., 2021). IPCC (2023) re-
ported that the greenhouse effect and deforesta-
tion contributed to a 1.1 °C increase in tempera-
ture from 2011–2020. The significant changes 
experienced are extreme climates with varied and 
more intense rainfall patterns in most parts of the 
world as well as increased extreme heat (Easter-
ling et al., 2000; Karl et al., 1995; Seneviratne 
et al., 2023). Climate is a key factor that affects 
the environment, socioeconomic conditions, and 

availability of water resources (Fentaw et al., 
2017; Panditharathne et al., 2023).

Climate change, as an influence on current 
environmental conditions, has an impact on in-
creasing hydro-meteorological disasters. ASEAN 
Coordinating Centre for Humanitarian Assistance 
(AHA Centre) year 2023 (ASEAN Coordinating 
Centre for Humanitarian Assistance (AHA Cen-
tre), 2023) In his report, a total of 88 natural di-
sasters occurred in Southeast Asia from January 
to August 2023, with Indonesia being prone to 
natural disasters. In 2022, the National Disaster 
Management Agency released the Indonesian Di-
saster Risk Index, which states that all provinces 
in Indonesia are at moderate to high risk of natural 
disasters (Adi et al., 2023). Compared with geo-
logical and biological disasters, hydro-meteoro-
logical disasters account for approximately 75% 
of the damage, including casualties and economic 
and infrastructure damage (Jayawardena, 2015). 
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This situation returns to human intervention, 
which has been active in changing the natural 
landscape to meet needs, resulting in the acceler-
ation of environmental degradation, namely, de-
forestation, which is not balanced by the govern-
ment’s ability to rehabilitate forests (Murdiyarso 
et al., 2015; Oumer, 2009; Putra et al., 2021). 
Hydro-meteorological disasters include cyclones, 
droughts, floods, heat waves, heavy snowfall, 
storms, floods and forest fires, where landslides 
become frequent disasters.

Indonesia’s mountainous conditions with ex-
treme topography are characteristic of the natural 
landscape with frequent landslide phenomena. In 
general, landslides are defined as the movement of 
soil, rock and other organic matter on slopes that 
are affected by gravity (Highland and Bobrowsky, 
2008). The triggers are the occurrence of heavy rain 
resulting from climate change, earthquakes, ero-
sion and slope cutting at angles ranging from ap-
proximately 5 to 20 degrees (Bandara et al., 2013). 
This phenomenon is certainly also influenced by 
human activities related to land use (Highland and 
Bobrowsky, 2008; Mohammadi et al., 2018). This 
phenomenon is interesting for researchers studying 
landslides as objects and mapping their vulnerabil-
ity to minimize the impact caused.

While hydro-meteorological events—includ-
ing cyclones, floods, and forest fires—account for 
75% of total disaster damage in terms of casual-
ties and infrastructure, landslides remain one of 
the most frequent and destructive phenomena in 
mountainous landscapes. Currently, geographic 
information systems (GIS) integrated with proba-
bilistic models like logistic regression, analytical 
hierarchy process (AHP), and artificial neural net-
works (ANN) are established tools for mapping 
landslide vulnerability. Methods and analysis 
techniques for modeling landslide vulnerability 
have developed continuously from time to time. 
GIS, which maps landslide vulnerability with re-
mote sensing data, is able to map landslide events 
and their causal parameters (Mersha and Meten, 
2020; Shahabi and Hashim, 2015). Many studies 
have combined GIS with probabilistic models, 
such as frequency ratios, fuzzy logic, logistic re-
gression, certainty factors, AHPs and ANNs (An-
balagan et al., 2015; Caniani et al., 2008; Deng et 
al., 2017; Khaddari et al., 2023; Lee and Pradhan, 
2006; Mirdda et al., 2019; Pradhan et al., 2009; 
Pradhan and Lee, 2010; Rasyid et al., 2016; Sema 
et al., 2017; Soma and Kubota, 2017, 2018; Xiong 
et al., 2018; Yalcin et al., 2011). 

However, a critical gap remains in localized 
modeling: broader regional studies often overlook 
the specific interplay between rapid, small-scale 
land-cover changes and traditional geomorphic 
mechanics. Furthermore, many existing models 
rely on lower-resolution data that fail to capture 
the unique regional geomorphic behavior of criti-
cal areas like the Biang Loe watershed. There is a 
scientific need to determine how high-resolution 
elevation data combined with multi-temporal 
imagery can improve the predictive accuracy of 
ANN models in specific mountainous contexts. 

This study uses an ANN, which is a model 
for mapping landslide vulnerability in the Biang 
Loe watershed. The ANN model was developed 
with information processing techniques inspired 
by the way biological systems, especially the hu-
man brain, work to solve a problem (Másson and 
Wang, 1990). The primary objectives are to evalu-
ate the model’s effectiveness in this context and to 
identify which causal parameters—derived from 
image interpretation and field surveys—contrib-
ute most significantly to landslide occurrence. 
Landslide history and causal data were integrated 
into a GIS using a 10 × 10 m raster resolution. 
Ultimately, this study aims to model and describe 
the spatial distribution of landslide vulnerability 
across the watershed.

METHODS

Study area

The Biang Loe watershed is in Bantaeng Re-
gency, South Sulawesi Province, Indonesia (Fig-
ure 1). The Bantaeng Regency has an extreme 
topography and is in a district prone to landslides. 
In addition, many watersheds have been damaged 
in the Bantaeng Regency area, one of which is the 
Biang Loe watershed. Research on the watershed 
is linked to hydrological processes that experi-
ence an imbalance in water use so that the Biang 
Loe watershed ecosystem is prone to landslides.

Landslide inventory

The collection of landslide event data is very 
important in the analysis of landslide vulnerabil-
ity. This observation was carried out by identify-
ing landslides from the results of remote sens-
ing image interpretation on the basis of spectral 
characteristics, shape, and contrast (Soma et al., 



158

Ecological Engineering & Environmental Technology 2026, 27(2), 156–169

2019a). Landslide events from 2018–2022 were 
identified via the imagery time series Google 
Earth Pro, which has high-resolution imagery for 
landslide identification (Saha et al., 2021). The 
results of the identification are then validated to 
obtain high accuracy. The results of the valida-
tion as a historical database of landslide events 
are divided into two data camps, namely, training 
data and data validation. The data used for train-
ing were processed with models, whereas the data 
used as data testers for validation were used to 
assess the prediction level of the model.

Factors that cause landslides

The factors were chosen on the basis of the 
conditions of the features of the study area, which 
are closely related to the causes of landslides, 
from the literature and the availability of data 
for the study area (Caniani et al., 2008; Sdao et 
al., 2013; Soma et al., 2019a). The causative fac-
tors are derived from secondary and primary data 
processed via ArcGIS. The causative factors that 
are variables in this study are rainfall data, slope, 
distance from rivers, lithology, elevation, distance 
from faults, land cover, aspect (slope direction) 
and curvature. Rainfall is a triggering factor for 
landslides. Rainfall data were processed from 
NASA’s MERRA-II climate data with a distribu-
tion of CSIRO station points. Spatial depiction 
of rainfall via the Isohyet method. DEM data, 
namely, DEMNAS data with a pixel resolution of 

8 × 8 m, are used for factor data related to topo-
graphic elements, namely, slope, distance from the 
river, elevation, aspect and curvature. The slope 
is obtained through tools slope in GIS with data 
classifications of 0–8% (flat), 8–15% (sloping), 
15–25% (slightly steep), 25–45% (steep) and 
>45% (very steep). The distance from the river is 
processed through tools to obtain the river channel 
and Euclidean distance to determine the distance 
with classifications of 0–20 m, 20–40 m, 40–60 m, 
60–80 m, 80–100 m and >100 m. The elevation 
values at the DEM were extracted and classified 
with a distance interval of 250 m. The aspect was 
treated from the tool perspective. The curvature is 
treated as tool curvature with convex, flat and con-
cave classes. Lithology data and fault lines were 
obtained from the geological data of the Geologi-
cal Agency, Ministry of Energy and Mineral Re-
sources of Indonesia. Advanced processing to ob-
tain the distance from the fault is carried out with 
the Euclidean distance tool with an interval of 500 
m. Land cover data are obtained from the results 
of Sentinel-2A image interpretation in 2022.

Data processing

Data management uses a qualitative method 
in which simple statistical techniques are used 
to determine the proximity between the relation-
ships between landslide events and their caus-
ative factors. This method can be applied with 
a frequency ratio approach and then models an 

Figure 1. Research location
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ANN. The frequency ratio is the comparison of 
the area where landslides occurred in the entire 
study area and the comparison of the chance of 
landslides with those that did not experience 
landslides (Tazik et al., 2014). If the resulting 
value is greater than 1.0, then the relationship be-
tween the landslide event and the causative factor 
is greater, and if the ratio is less than 1.0, then 
the relationship between the landslide event and 
the causative factor is low (Lee and Lee, 2006). 
The ratio value in each class shows the level of 
relationship between the frequency value of the 
ratio calculated by the formula. Here, the equa-
tion used is as follows (Soma et al., 2019b):

 	 𝐹𝐹𝐹𝐹 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑛𝑛𝑛𝑛)/ ∑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑛𝑛𝑛𝑛)/ ∑𝑃𝑃𝑃𝑃𝑃𝑃  (1) 

 
𝑋𝑋𝑖𝑖

′ = ( 𝑋𝑋𝑋𝑋 − 𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑚𝑚𝑚𝑚𝑚𝑚) (𝑥𝑥′ max − 𝑥𝑥′ 𝑚𝑚𝑚𝑚𝑚𝑚) + 

+ 𝑥𝑥′ min  
 

(2) 
 
𝑦𝑦𝑦𝑦 =  𝐺𝐺 +  (𝑏𝑏2 + 𝑊𝑊2 (𝑠𝑠(𝑥𝑥1 +  𝑊𝑊′𝑖𝑖))) (3) 
 

	 (1)

where:	Fr – Frequency ratio value, Pxcl	– Num-
ber of pixels with landslides in class n 
of parameter m (nm), Pixels – Number 
of pixels in class n of parameter m (nm), 
𝛴Pxcl – Total pixel avalanche, 𝛴Pnx – To-
tal number of pixels in the area.

Furthermore, the results of the normalized 
value data from the frequency ratio were used to 
advance the data analysis. The value of normal-
ization can be calculated via the following equa-
tion (Soma et al., 2019b):

	

𝐹𝐹𝐹𝐹 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑛𝑛𝑛𝑛)/ ∑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑛𝑛𝑛𝑛)/ ∑𝑃𝑃𝑃𝑃𝑃𝑃  (1) 

 
𝑋𝑋𝑖𝑖

′ = ( 𝑋𝑋𝑋𝑋 − 𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑚𝑚𝑚𝑚𝑚𝑚) (𝑥𝑥′ max − 𝑥𝑥′ 𝑚𝑚𝑚𝑚𝑚𝑚) + 

+ 𝑥𝑥′ min  
 

(2) 
 
𝑦𝑦𝑦𝑦 =  𝐺𝐺 +  (𝑏𝑏2 + 𝑊𝑊2 (𝑠𝑠(𝑥𝑥1 +  𝑊𝑊′𝑖𝑖))) (3) 
 

	 (2)

where:	Xi’ – Normalized frequency ratio value, 
Xi – Frequency value ratio of each class, 
Xmax – Highest actual input data, Xmin – 
Lowest actual input data, X’max – High-
est target value, X’min – Lowest target 
value.

Then, process that number (if it exceeds the 
neuron threshold, the neuron is then activated) us-
ing a nonlinear activation function to produce a 
result (𝑦𝑖), which is the output with the equation 
(Soma et al., 2019b):

	

𝐹𝐹𝐹𝐹 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑛𝑛𝑛𝑛)/ ∑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑛𝑛𝑛𝑛)/ ∑𝑃𝑃𝑃𝑃𝑃𝑃  (1) 

 
𝑋𝑋𝑖𝑖

′ = ( 𝑋𝑋𝑋𝑋 − 𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑚𝑚𝑚𝑚𝑚𝑚) (𝑥𝑥′ max − 𝑥𝑥′ 𝑚𝑚𝑚𝑚𝑚𝑚) + 

+ 𝑥𝑥′ min  
 

(2) 
 
𝑦𝑦𝑦𝑦 =  𝐺𝐺 +  (𝑏𝑏2 + 𝑊𝑊2 (𝑠𝑠(𝑥𝑥1 +  𝑊𝑊′𝑖𝑖))) (3) 
 

	 (3)

where:	𝑦𝑖 – Results from ANN, G – Activation 
function, 𝑏1 – Bias vector 1, 𝑊1 – Weight 
matrix 1, 𝑏2 – Bias vector 2, 𝑊2 – Weight 
matrix 2.

The results of the analyzed data are scaled in a 
range from 0–1. Scaling is performed to improve 
the accuracy of subsequent digital information 

and achieve better results (Sheela and Deepa, 
2013). In this study, a multilayer perceptron 
(MLP) was applied. For each hidden neuron and 
output neuron, its input is processed by multiply-
ing each input (𝑥𝑖) by the appropriate weight (𝑤𝑖) 
(Soma et al., 2019b):

	 𝐿𝐿𝐿𝐿𝐿𝐿 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖=0
𝑛𝑛  =  ∑𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  (4) 	 (4)

where: LSI ANN – Landslide susceptibility index/
landslide vulnerability end map calcu-
lated for all pixels, Wi – Input weight, Xi 
– Input.

ANN Configuration and Platform The ANN 
model was implemented using a multilayer per-
ceptron (MLP) architecture within the SPSS soft-
ware environment. The network configuration 
consisted of:
	• input layer: 9 causative factors (rainfall, slope, 

distance from river, lithology, elevation, dis-
tance from fault, land cover, aspect, and 
curvature).

	• hidden layer: A single hidden layer with 
a sigmoid activation function to process 
non-linearities.

	• output layer: A single neuron using a linear 
activation function to generate the landslide 
susceptibility index (LSI).

	• training parameters: The model utilized a 
backpropagation algorithm with a learning 
rate of 0.1 and momentum of 0.9.

The selection of iterations was determined by 
a stopping criterion based on the minimization 
of the mean square error (MSE); training ceased 
when the error on the validation set failed to im-
prove for 10 consecutive iterations, preventing 
overfitting. The dataset was split landslide eveden 
from 175 pixel into 70% for training (131 pix-
els) and 30% for validation (44 pixels). This ratio 
is statistically justified as it provides a sufficient 
sample size for the backpropagation algorithm to 
converge while maintaining an independent sub-
set large enough to ensure the reliability of the 
AUC/ROC validation.

Data validation

ANN modeling is used to verify the results 
of landslide hazard analysis via the data obtained 
to determine the accuracy of the map. These data 
determine the value of conformity by using field 
validation data, which provide an estimate that 
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field data are considered correct and most suit-
able for actual risk conditions. The validation re-
sults show that the prediction accuracy value is 
based on the area under the curve (AUC) through 
receiver operating characteristic (ROC) analysis 
via SPSS software. These data determine the vali-
dation value of the data application via estimates 
provided by the field. Field data are considered to 
be the correct and most appropriate true risk pro-
file. In the classification, the results of landslide 
validation are then grouped into several value 
ranges, namely, 0.5 - 0.6 declared failed, 0.6–0.7 
declared poor, 0.7–0.8 declared moderate/ade-
quate, 0.8–0.9 declared good, and 0.9–1 declared 
very good (Rasyid et al., 2016).

Landslide vulnerability map

Furthermore, after obtaining the LSI score 
and going through the validation stage, a land-
slide susceptibility map was constructed with the 
level of landslide vulnerability consisting of 5 
classes, namely, very low, low, medium, high, and 
very high. The determination of this class uses the 
natural breaks model.

DISCUSSION AND RESULTS

Landslide identification

There were 103 landslide incidents over 5 
years (2018–2022). Identification is based on 
interpretation of the shape of the direction of 
the landslide, the slope and the hue/color of the 
landslide, which has a varying area (Soma et al., 
2019a). The inventory was carried out from up-
stream, middle, and downstream areas and re-
vealed 31 incidents with an area of 0.723 ha in 
2018; 27 incidents with an area of 0.545 ha in 

2019; 20 incidents with an area of 0.221 ha in 
2022; and 15 incidents in 2020 with an area of 
0.172 ha and 10 incidents in 2021 with an area of 
0.119 ha (Figure 2).

Landslides encountered in the field are clas-
sified as traditional landslides because the rocks 
that move in their plane form flat or undulating 
slopes. The results of data processing will contin-
ue with topology test analysis to overcome errors, 
which are then converted into raster data, which 
will later be used as a database in modeling. The 
data division used to validate the model success 
rate in calculating the landslide opportunity value 
is 70% for model training data of 131 pixels and 
30% for validation data of 44 pixels, with a total 
of 175 pixels out of the total pixels of the Biang 
Loe watershed of 4,746.05 pixels (Figures 3, 4).

Causative factors of landslides

There are 9 (nine) maps of landslide occur-
rence factors. The factors used in this study were 
the causes of landslide vulnerability selected from 
the literature, data availability, and conditions of 
the research site (Figure 5).

Frequency ratio (FR)

When the frequency values of the ratio and 
normalization values with the factors causing 
landslides are shown in Table 1, the highest FR 
value is found for the curvature factor of the earth 
in the concave class, with an FR value of 3.51, 
which indicates that this class has a very high 
chance of landslide events. This finding is in line 
with the findings of Rasyid et al., (2016), who re-
ported that the FR ratio value is correlated with 
landslides and each class of landslide-causing 
factors in a numerical format.

Figure 2. Graph of the number of landslide events in the Biang Loe watershed



161

Ecological Engineering & Environmental Technology 2026, 27(2), 156–169

Figure 3. Form of interpretation of landslide events: (a) prediction via Google Earth Pro, 
(b) actual validation in the field

Figure 4. Map of the distribution of landslide events

Artificial neural network (ANN)

The final landslide vulnerability map is multi-
plied by each causative factor calculated through 
ANN analysis and then overlayed from these lay-
ers via the multilayer perceptron (MLP) formula 
with ten repetitions. From these data, the best rep-
etition results to be taken are in the 7th (seventh) 
trial. The final result is determined by the LSI and 
tested for its validation level.

Table 2 shows that the repetition values of all 
the factors can affect the occurrence of landslides 
in this region. However, several factors strongly 
influence this incident. If you look at the factors 
that are very influential, namely, the curvature of 

the earth, the slope, the direction of the slope, the 
distance from the river and lithology. This can be 
attributed to the value of these factors becoming 
more dominant and being able to adjust to the 
ANN model. The ANN equation obtained in the 
7th test is as follows.

	 LSI ANNiterasi = (0.082) (ANN Tutupan Lahan) + 	

	+ (0.096) (ANN Ketinggian) + (0.076) (ANN Curah Hujan) + 	

	 + (0.126) (ANN Arah Lereng) + (0.106) (ANN Litologi) +	

	+ (0.145) (ANNLereng) + (0.149) (ANN Kelengkungan Bumi) + 	

	 + (0.126) (ANN Jarak Dari Sungai) +	  

	 + (0.093) (ANNJarak Dari Patahan)	 (5)
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Figure 5. Map 9 landslide factors: (a) land cover, (b) lithology, (c) elevation, (d) distance from river, (e) rainfall, 
(f) distance from fault, (g) curvature, (h) slope and (i) aspect

The landslide vulnerability index value from 
the LSI ANN in Figure 8 is the best range from 
0.437–1.970, and the landslide vulnerability 
index map is input and classified into 5 (five) 
classes via tools (natural breaks). The results of 
the data processing produce classes ranging from 
very low, low, medium, high and very high to 
landslide vulnerability (Figure 6).

Validation

Validation is carried out via the receiver op-
erating characteristic (ROC) curve for multiclass 
classification. The result of this validation is the 
accuracy of the prediction evaluated on the basis 

of the area under the curve (AUC). In the research 
of Samanta et al., (2018), the AUC is considered 
a pe indicator in support of model prediction. The 
next stage involves the results of the ROC analysis, 
which is validated. Validation 1 is used to deter-
mine the success rate of the model from the ANN 
value, and validation 2 is used to determine the pre-
diction level of the model against landslide events. 
The curve of the validation results obtained from 
SPSS software with ROC analysis of the Biang 
Loe watershed is shown in Figure 7 and Table 3.

Table 3 shows the results of ANN modeling 
on landslide events, with values of 0.809 for the 
model success rate and 0.745 for the model pre-
diction rate. The predictive performance of the 
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Table 1. FR values and normalization values with landslide-causing factors
No Parameter Class Pixel (nm) %Pixel (nm) PxcL (nm) %PxcL (nm) FRI N FR

1 Land cover

Primary forest 70.836 14.93 42 32.06 2.15 0.66

Secondary forest 19.041 4.01 17 12.98 3.23 1.00

Settlement 28.064 5.91 0 0.00 0.00 0.00

Dryland agriculture 38.414 8.09 6 4.58 0.57 0.17

Mixed dryland agriculture 204.132 43.01 17 12.98 0.30 0.09

Paddy 29.717 6.26 4 3.05 0.49 0.15

Bushes 76.109 16.04 45 34.35 2.14 0.66

Water body 8.266 1.74 0 0.00 0.00 0.00

2 Lithology

Qac 4.664 0.98 0 0.00 0.00 0.00

Qlv 337.180 71.05 121 92.37 1.30 1.00

Qlvb 132.735 27.97 10 7.63 0.27 0.21

3 Slope (%)

0–8 74.712 15.74 8 6.11 0.39 0.13

8–15 93.102 19.62 6 4.58 0.23 0.08

15–25 115.489 24.34 22 16.79 0.69 0.23

25–45 103.705 21.85 23 17.56 0.80 0.27

>45 87.571 18.45 72 54.96 2.98 1.00

4 Curvature

Concave 24.803 5.23 24 18.32 3.51 1.00

Fl;at 72.408 15.26 16 12.21 0.80 0.23

Convex 377.368 79.52 91 69.47 0.87 0.25

5 Elevation 
(msal)

0–250 85.947 18.11 9 6.87 0.38 0.21

250–500 101.231 21.33 8 6.11 0.29 0.16

500–750 79.651 16.78 10 7.63 0.45 0.25

750–1000 62.191 13.10 30 22.90 1.75 0.95

>1000 145.559 30.67 74 56.49 1.84 1.00

6 Distance from 
river (m)

0–20 50.658 10.67 16 12.21 1.14 0.70

20–40 40.083 8.45 16 12.21 1.45 0.88

40–60 41.919 8.83 19 14.50 1.64 1.00

60–80 37.659 7.94 13 9.92 1.25 0.76

80–100 37.788 7.96 5 3.82 0.48 0.29

>100 266.472 56.15 62 47.33 0.84 0.51

7 Distance from 
fault (m)

0–500 19.828 4.18 0 0.00 0.00 0.00

500–1000 6.835 1.44 2 1.53 1.06 0.61

1000–1500 6.261 1.32 3 2.29 1.74 1.00

1500–2000 7.779 1.64 0 0.00 0.00 0.00

>2000 433.876 91.42 126 96.18 1.05 0.61

8 Aspect

North 28.485 6.00 18 13.74 2.29 1.00

Northeast 58.995 12.43 24 18.32 1.47 0.64

Timur 63.366 13.35 19 14.50 1.09 0.47

Southeast 60.044 12.65 6 4.58 0.36 0.16

South 58.199 12.26 9 6.87 0.56 0.24

Southwest 57.698 12.16 12 9.16 0.75 0.33

West 62.249 13.12 21 16.03 1.22 0.53

Northwest 57.521 12.12 12 9.16 0.76 0.33

Datar 28.022 5.90 10 7.63 1.29 0.56

9 Rainfall (mm/
yr)

2261,00–2423,77 69.571 14.66 9 6.87 0.47 0.24

2423,77–2586,54 75.169 15.84 5 3.82 0.24 0.12

2586,54–2768,09 110.600 23.30 10 7.63 0.33 0.17

2768,09–2930,86 196.643 41.44 107 81.68 1.97 1.00

2930,86–3059,19 22.596 4.76 0 0.00 0.00 0.00

Note: Pxcl (nm) is the number of pixels of the landslide, the number of pixels of pixel class n on the parameter and 
N FR is the normalization of the FR value.
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Table 2. ROC repetition values for ANN modeling

Landslide factors
Iteration

1 2 3 4 5 6 7 8 9 10

Land cover 0.182 0.127 0.149 0.094 0.133 0.135 0.082 0.086 0.139 0.115

Elevation 0.130 0.171 0.123 0.072 0.111 0.094 0.096 0.072 0.084 0.094

Rainfall 0.124 0.136 0.097 0.145 0.137 0.102 0.076 0.121 0.090 0.135

Aspect 0.086 0.101 0.085 0.115 0.158 0.114 0.126 0.132 0.194 0.178

Lithology 0.032 0.058 0.027 0.045 0.059 0.043 0.106 0.148 0.060 0.026

Slope 0.192 0.139 0.102 0.106 0.107 0.087 0.145 0.099 0.205 0.183

Curvature 0.087 0.042 0.126 0.080 0.084 0.147 0.149 0.189 0.021 0.042

Distance from river 0.117 0.125 0.186 0.154 0.141 0.164 0.126 0.036 0.148 0.117

Distance from fault 0.050 0.101 0.105 0.187 0.069 0.113 0.093 0.117 0.059 0.110

Figure 6. Landslide vulnerability index map for the ANN method
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Figure 7. (a) ANN success rate and (b) prediction rate accuracy test curves

ANN model in this study (AUC: 0.809) aligns 
with the findings of Saha et. all (2022), who 
observed that neural networks provide a higher 
degree of accuracy in complex mountainous wa-
tersheds due to their ability to model non-linear 
interactions between slope and hydrology.

Landslide vulnerability map

This landslide vulnerability map is calculated 
on the basis of the analysis of the LSI value, which 
is then validated through the iteration step and then 
continues with the step of finding the NGO value 
via the class division method through the classi-
fication of natural break tools. Natural breaks are 
a grouping of similar values in maximizing the 
difference between classes (Moreira et al., 2021), 
which has high accuracy in the division of geo-
graphical environmental units (Basofi et al., 2015).

Table 4 shows that the landslide vulnerability 
index in the Biang Loe watershed can be divided 
into 5 (five) vulnerability classes. The most dom-
inant landslide vulnerability is in the very low 
class, with areas of 1,226.30 Ha or 25.84% of the 
watershed area. The second is in the low class, 
which has an area of 1,165.04 Ha or 24.55% of 
the watershed area. Third, the high class has an 
area of 865.36 ha or 18.23% of the watershed area. 
Fourth, the medium class has an area of 816.21 ha 
or 17.20% of the watershed area. Fifth, the very 
high class has an area of 673.12 or 14.18% of the 
watershed area. On the basis of the level of vul-
nerability, the predominant parameters for each 
parameter are presented in Table 5.

Table 5 shows that in the first class, the 
landslide vulnerability is very low, dominated 
by an elevation of 0–250 m asl, the land cover 
of the mixed farming area, with a rainfall of 

Table 3. ANN modeling AUC values from the ROC analysis results for the success rate and prediction

No Validation
AUC value

1 2 3 4 5 6 7 8 9 10

1 Success 0.796 0.799 0.803 0.803 0.807 0.809 0.805 0.808 0.804 0.805

2 Predictions 0.734 0.733 0.742 0.736 0.737 0.745 0.737 0.744 0.732 0.732

Table 4. Vulnerability index values and classes
No Vulnerability index value Landslide vulnerability classes Number of pixels Area (Ha) (%)

1 1.82–3.14 Very low 121.610 1.226,30 25.84

2 3.14–4.12 Low 116.908 1.165,04 24.55

3 4.12–5.17 Keep 81.580 816.21 17.20

4 5.17–6.19 High 86.930 865.36 18.23

5 6.19–8.66 Very high 67.551 673.12 14.18

Sum 474.579 4.746,05 100
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2,261.00–2,423.77 mm/year, the direction of the 
southeast slope, the lithology of the Qac and Qlvb, 
the slope of 0–8%, concave curvature, the distance 
from the river 40–60 m and the distance from the 
fault of 1500–2000 m. In the second class, low 
landslide vulnerability is dominated by an eleva-
tion of 500– 750 m asl, mixed farming area land 
cover, rainfall of 2,585.54–2,768.09 mm/yr, east 
slope direction, Qlv lithology, slope 15–25%, 
concave curvature, distance from the river 40–60 
m and distance from faults 1500–2000 m. In the 
third class, landslide vulnerability is dominated 
by an elevation of >1000 m asl, shrubland cover, 
rainfall of 2,768.09–2,930.86 mm/yr, direction of 
the northern and northeastern slopes, lithology of 
the Qlv, slope of 25–45%, concave curvature, and 
distance from the river 40–60 m. Based on the 

Table 5 show the more affect the occurrence of 
landslides in the Biang Loe watershed are aspect, 
lithology, slope, curvature and distance from the 
river. Furthermore, our findings regarding factor 
dominance mirror regional observations in South 
Sulawesi; for instance, Asdar et al. (2021) identi-
fied that slope steepness and lithology were prima-
ry drivers of instability in the nearby Tangka Wa-
tershed using the Frequency Ratio method. While 
different statistical approaches were utilized, the 
convergence of results highlighting topography 
and geology as dominant predictors across both 
the Biang Loe and Tangka watersheds suggests 
a consistent geomorphic behavior in the region. 
This validates the robust generalization capabili-
ties of the ANN approach for localized disaster 
management and spatial planning in Indonesia.

Figure 8. Map of the vulnerability level of landslides in the Biang Loe watershed

Table 5. Parameters that influence landslide vulnerability

Parameter
Vulnerability classes

Very low Low Keep Tall Very high

Elevation 0–250 m asl 500–750 m asl >1000 m asl

Land cover Mix farming area Scrubland Primary and secondary forest

Rainfall 2,261.00-2,423.77 mm/yr 2,586.54-2,768.09 mm/
yr 2,768.09-2,930.86 mm/yr

Aspect Southeast East North and Northeast

Lithology Qac dan Qlvb Qlv

Slope 0–8% 15–25% 25–45% >45%

Curvature Concave

Distance from river 40–60 m

Distance from fault 1500–2000 m
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CONCLUSIONS

The analysis of landslide distribution in the 
Biang Loe watershed over the last five years re-
vealed a total of 103 distinct incidents, peaking 
in 2018, with 31 events covering 0.723 hectares. 
Through the application of the ANN model, this 
study determined that the structural predisposition 
for soil instability in this region is driven primarily 
by five dominant causative factors: aspect, lithol-
ogy, slope steepness, curvature, and proximity to 
river systems. These results align with contempo-
rary regional geomorphic behavior, confirming 
that high-resolution topographic and geological 
factors remain the primary predictors of landslide 
initiation in the South Sulawesi landscape.

In terms of spatial susceptibility, the ANN 
model demonstrated high predictive reliability in 
identifying critical zones of instability. The “high” 
vulnerability category accounts for 18.37% of the 
area, whereas the “very high” category encompass-
es 15.48%, representing zones where steep gradi-
ents and specific lithological formations intersect. 
Consequently, the resulting landslide susceptibility 
map provides a critical data-driven framework for 
regional risk management, offering actionable in-
sights for local authorities to prioritize slope sta-
bilization and refine spatial planning policies to 
reduce potential human and economic losses.
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