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ABSTRACT

The Bantaeng Regency has an extreme topography and is located in a district prone to landslides. In addition,
many watersheds have been damaged in the Bantaeng Regency area, one of which is the Biang Loe watershed.
This study maps landslide vulnerability using an artificial neural network (ANN) model to provide a robust predic-
tive framework for disaster mitigation. This study was conducted to identify the distribution of landslides in the
Biang Loe watershed, analyze the factors that affect the occurrence of landslides and map the level of landslide
vulnerability. Analysis of 103 landslide events (2018-2022) revealed that slope direction, lithology, slope steep-
ness, curvature, and proximity to rivers are the primary drivers of instability. The model demonstrated high pre-
dictive performance with an area under the curve (AUC) of 0.811, categorizing it as “good” for regional hazard
assessment. Results show that while 25.84% of the area falls into the very low vulnerability class, critical high-risk
zones were identified in areas with slopes >45% and concave curvature. These findings provide a data-driven basis
for regional risk management, enabling planners to prioritize slope stabilization and restrict infrastructure develop-

ment in identified high-vulnerability corridors to minimize future economic and human losses.

Keywords: artificial neural network, landslide, mapping, Biang Loe watershed.

INTRODUCTION

Human intervention has an impact on dis-
rupting the balance of global natural ecosystems,
including climate change (World Economic Fo-
rum, 2023). The greenhouse effect of increasing
emissions and deforestation for various purposes
is one of the causes of climate change resulting
from human activities (Ali et al., 2014; Chancel
et al., 2023; Gulev et al., 2021). IPCC (2023) re-
ported that the greenhouse effect and deforesta-
tion contributed to a 1.1 °C increase in tempera-
ture from 2011-2020. The significant changes
experienced are extreme climates with varied and
more intense rainfall patterns in most parts of the
world as well as increased extreme heat (Easter-
ling et al., 2000; Karl et al., 1995; Seneviratne
et al., 2023). Climate is a key factor that affects
the environment, socioeconomic conditions, and
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availability of water resources (Fentaw et al.,
2017; Panditharathne et al., 2023).

Climate change, as an influence on current
environmental conditions, has an impact on in-
creasing hydro-meteorological disasters. ASEAN
Coordinating Centre for Humanitarian Assistance
(AHA Centre) year 2023 (ASEAN Coordinating
Centre for Humanitarian Assistance (AHA Cen-
tre), 2023) In his report, a total of 88 natural di-
sasters occurred in Southeast Asia from January
to August 2023, with Indonesia being prone to
natural disasters. In 2022, the National Disaster
Management Agency released the Indonesian Di-
saster Risk Index, which states that all provinces
in Indonesia are at moderate to high risk of natural
disasters (Adi et al., 2023). Compared with geo-
logical and biological disasters, hydro-meteoro-
logical disasters account for approximately 75%
of the damage, including casualties and economic
and infrastructure damage (Jayawardena, 2015).
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This situation returns to human intervention,
which has been active in changing the natural
landscape to meet needs, resulting in the acceler-
ation of environmental degradation, namely, de-
forestation, which is not balanced by the govern-
ment’s ability to rehabilitate forests (Murdiyarso
et al., 2015; Oumer, 2009; Putra et al., 2021).
Hydro-meteorological disasters include cyclones,
droughts, floods, heat waves, heavy snowfall,
storms, floods and forest fires, where landslides
become frequent disasters.

Indonesia’s mountainous conditions with ex-
treme topography are characteristic of the natural
landscape with frequent landslide phenomena. In
general, landslides are defined as the movement of
soil, rock and other organic matter on slopes that
are affected by gravity (Highland and Bobrowsky,
2008). The triggers are the occurrence of heavy rain
resulting from climate change, earthquakes, ero-
sion and slope cutting at angles ranging from ap-
proximately 5 to 20 degrees (Bandara et al., 2013).
This phenomenon is certainly also influenced by
human activities related to land use (Highland and
Bobrowsky, 2008; Mohammadi et al., 2018). This
phenomenon is interesting for researchers studying
landslides as objects and mapping their vulnerabil-
ity to minimize the impact caused.

While hydro-meteorological events—includ-
ing cyclones, floods, and forest fires—account for
75% of total disaster damage in terms of casual-
ties and infrastructure, landslides remain one of
the most frequent and destructive phenomena in
mountainous landscapes. Currently, geographic
information systems (GIS) integrated with proba-
bilistic models like logistic regression, analytical
hierarchy process (AHP), and artificial neural net-
works (ANN) are established tools for mapping
landslide vulnerability. Methods and analysis
techniques for modeling landslide vulnerability
have developed continuously from time to time.
GIS, which maps landslide vulnerability with re-
mote sensing data, is able to map landslide events
and their causal parameters (Mersha and Meten,
2020; Shahabi and Hashim, 2015). Many studies
have combined GIS with probabilistic models,
such as frequency ratios, fuzzy logic, logistic re-
gression, certainty factors, AHPs and ANNs (An-
balagan et al., 2015; Caniani et al., 2008; Deng et
al., 2017; Khaddari et al., 2023; Lee and Pradhan,
2006; Mirdda et al., 2019; Pradhan et al., 2009;
Pradhan and Lee, 2010; Rasyid et al., 2016; Sema
etal.,2017; Soma and Kubota, 2017, 2018; Xiong
etal., 2018; Yalcin et al., 2011).

However, a critical gap remains in localized
modeling: broader regional studies often overlook
the specific interplay between rapid, small-scale
land-cover changes and traditional geomorphic
mechanics. Furthermore, many existing models
rely on lower-resolution data that fail to capture
the unique regional geomorphic behavior of criti-
cal areas like the Biang Loe watershed. There is a
scientific need to determine how high-resolution
elevation data combined with multi-temporal
imagery can improve the predictive accuracy of
ANN models in specific mountainous contexts.

This study uses an ANN, which is a model
for mapping landslide vulnerability in the Biang
Loe watershed. The ANN model was developed
with information processing techniques inspired
by the way biological systems, especially the hu-
man brain, work to solve a problem (Masson and
Wang, 1990). The primary objectives are to evalu-
ate the model’s effectiveness in this context and to
identify which causal parameters—derived from
image interpretation and field surveys—contrib-
ute most significantly to landslide occurrence.
Landslide history and causal data were integrated
into a GIS using a 10 x 10 m raster resolution.
Ultimately, this study aims to model and describe
the spatial distribution of landslide vulnerability
across the watershed.

METHODS

Study area

The Biang Loe watershed is in Bantaeng Re-
gency, South Sulawesi Province, Indonesia (Fig-
ure 1). The Bantaeng Regency has an extreme
topography and is in a district prone to landslides.
In addition, many watersheds have been damaged
in the Bantaeng Regency area, one of which is the
Biang Loe watershed. Research on the watershed
is linked to hydrological processes that experi-
ence an imbalance in water use so that the Biang
Loe watershed ecosystem is prone to landslides.

Landslide inventory

The collection of landslide event data is very
important in the analysis of landslide vulnerabil-
ity. This observation was carried out by identify-
ing landslides from the results of remote sens-
ing image interpretation on the basis of spectral
characteristics, shape, and contrast (Soma et al.,

157



Ecological Engineering & Environmental Technology 2026, 27(2), 156-169

T

TS

= ~Z T
LEGEND
ADMINISTRATIVE BOUNDARY
==+=+= Rogency Boundary
WATERSHED BOUNDARY
< BangLos Wklsched

ROAD NETWORK
Road
WATER AREA
River

ELEVATION
r— L]

T 7 O WNA T AT

Figure 1. Research location

2019a). Landslide events from 2018-2022 were
identified via the imagery time series Google
Earth Pro, which has high-resolution imagery for
landslide identification (Saha et al., 2021). The
results of the identification are then validated to
obtain high accuracy. The results of the valida-
tion as a historical database of landslide events
are divided into two data camps, namely, training
data and data validation. The data used for train-
ing were processed with models, whereas the data
used as data testers for validation were used to
assess the prediction level of the model.

Factors that cause landslides

The factors were chosen on the basis of the
conditions of the features of the study area, which
are closely related to the causes of landslides,
from the literature and the availability of data
for the study area (Caniani et al., 2008; Sdao et
al., 2013; Soma et al., 2019a). The causative fac-
tors are derived from secondary and primary data
processed via ArcGIS. The causative factors that
are variables in this study are rainfall data, slope,
distance from rivers, lithology, elevation, distance
from faults, land cover, aspect (slope direction)
and curvature. Rainfall is a triggering factor for
landslides. Rainfall data were processed from
NASA’s MERRA-II climate data with a distribu-
tion of CSIRO station points. Spatial depiction
of rainfall via the Isohyet method. DEM data,
namely, DEMNAS data with a pixel resolution of
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8 x 8 m, are used for factor data related to topo-
graphic elements, namely, slope, distance from the
river, elevation, aspect and curvature. The slope
is obtained through tools slope in GIS with data
classifications of 0-8% (flat), 8—15% (sloping),
15-25% (slightly steep), 25-45% (steep) and
>45% (very steep). The distance from the river is
processed through tools to obtain the river channel
and Euclidean distance to determine the distance
with classifications of 0-20 m, 20-40 m, 40—-60 m,
60—-80 m, 80-100 m and >100 m. The elevation
values at the DEM were extracted and classified
with a distance interval of 250 m. The aspect was
treated from the tool perspective. The curvature is
treated as tool curvature with convex, flat and con-
cave classes. Lithology data and fault lines were
obtained from the geological data of the Geologi-
cal Agency, Ministry of Energy and Mineral Re-
sources of Indonesia. Advanced processing to ob-
tain the distance from the fault is carried out with
the Euclidean distance tool with an interval of 500
m. Land cover data are obtained from the results
of Sentinel-2A image interpretation in 2022.

Data processing

Data management uses a qualitative method
in which simple statistical techniques are used
to determine the proximity between the relation-
ships between landslide events and their caus-
ative factors. This method can be applied with
a frequency ratio approach and then models an
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ANN. The frequency ratio is the comparison of
the area where landslides occurred in the entire
study area and the comparison of the chance of
landslides with those that did not experience
landslides (Tazik et al., 2014). If the resulting
value is greater than 1.0, then the relationship be-
tween the landslide event and the causative factor
is greater, and if the ratio is less than 1.0, then
the relationship between the landslide event and
the causative factor is low (Lee and Lee, 2006).
The ratio value in each class shows the level of
relationship between the frequency value of the
ratio calculated by the formula. Here, the equa-
tion used is as follows (Soma et al., 2019b):

Fp = PxcL (mm)/¥pxcl (1)

Pixel (nm)/ Y.Pnx

where: Fr — Frequency ratio value, Pxc/ — Num-
ber of pixels with landslides in class n
of parameter m (nm), Pixels — Number
of pixels in class n of parameter m (nm),
2 Pxcl —Total pixel avalanche, X' Pnx — To-
tal number of pixels in the area.

Furthermore, the results of the normalized
value data from the frequency ratio were used to
advance the data analysis. The value of normal-
ization can be calculated via the following equa-
tion (Soma et al., 2019b):

Xi—xmin .
i, = (x max—min) (x’ max — x' mm') + (2)
+ x' min

where: Xi’ — Normalized frequency ratio value,
Xi — Frequency value ratio of each class,
Xmax — Highest actual input data, Xmin —
Lowest actual input data, X 'max — High-
est target value, X’'min — Lowest target
value.

Then, process that number (if it exceeds the
neuron threshold, the neuron is then activated) us-
ing a nonlinear activation function to produce a
result (yi), which is the output with the equation
(Soma et al., 2019b):

yi =G+ (b2+W2(s(xt+ W) (3)

where: yi — Results from ANN, G — Activation
function, b1 — Bias vector 1, W1 — Weight
matrix 1, b2 — Bias vector 2, W2 — Weight
matrix 2.

The results of the analyzed data are scaled in a
range from 0—1. Scaling is performed to improve
the accuracy of subsequent digital information

and achieve better results (Sheela and Deepa,
2013). In this study, a multilayer perceptron
(MLP) was applied. For each hidden neuron and
output neuron, its input is processed by multiply-
ing each input (xi) by the appropriate weight (wi)
(Soma et al., 2019b):

LSI ANNX, = Ywixi (4)

where: LSI ANN — Landslide susceptibility index/
landslide vulnerability end map calcu-
lated for all pixels, Wi — Input weight, Xi
— Input.

ANN Configuration and Platform The ANN
model was implemented using a multilayer per-
ceptron (MLP) architecture within the SPSS soft-
ware environment. The network configuration
consisted of:

e input layer: 9 causative factors (rainfall, slope,
distance from river, lithology, elevation, dis-
tance from fault, land cover, aspect, and
curvature).

e hidden layer: A single hidden layer with
a sigmoid activation function to process
non-linearities.

e output layer: A single neuron using a linear
activation function to generate the landslide
susceptibility index (LSI).

e training parameters: The model utilized a
backpropagation algorithm with a learning
rate of 0.1 and momentum of 0.9.

The selection of iterations was determined by
a stopping criterion based on the minimization
of the mean square error (MSE); training ceased
when the error on the validation set failed to im-
prove for 10 consecutive iterations, preventing
overfitting. The dataset was split landslide eveden
from 175 pixel into 70% for training (131 pix-
els) and 30% for validation (44 pixels). This ratio
is statistically justified as it provides a sufficient
sample size for the backpropagation algorithm to
converge while maintaining an independent sub-
set large enough to ensure the reliability of the
AUC/ROC validation.

Data validation

ANN modeling is used to verify the results
of landslide hazard analysis via the data obtained
to determine the accuracy of the map. These data
determine the value of conformity by using field
validation data, which provide an estimate that
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field data are considered correct and most suit-
able for actual risk conditions. The validation re-
sults show that the prediction accuracy value is
based on the area under the curve (AUC) through
receiver operating characteristic (ROC) analysis
via SPSS software. These data determine the vali-
dation value of the data application via estimates
provided by the field. Field data are considered to
be the correct and most appropriate true risk pro-
file. In the classification, the results of landslide
validation are then grouped into several value
ranges, namely, 0.5 - 0.6 declared failed, 0.6-0.7
declared poor, 0.7-0.8 declared moderate/ade-
quate, 0.8—0.9 declared good, and 0.9—1 declared
very good (Rasyid et al., 2016).

Landslide vulnerability map

Furthermore, after obtaining the LSI score
and going through the validation stage, a land-
slide susceptibility map was constructed with the
level of landslide vulnerability consisting of 5
classes, namely, very low, low, medium, high, and
very high. The determination of this class uses the
natural breaks model.

DISCUSSION AND RESULTS

Landslide identification

There were 103 landslide incidents over 5
years (2018-2022). Identification is based on
interpretation of the shape of the direction of
the landslide, the slope and the hue/color of the
landslide, which has a varying area (Soma et al.,
2019a). The inventory was carried out from up-
stream, middle, and downstream areas and re-
vealed 31 incidents with an area of 0.723 ha in
2018; 27 incidents with an area of 0.545 ha in
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2019; 20 incidents with an area of 0.221 ha in
2022; and 15 incidents in 2020 with an area of
0.172 ha and 10 incidents in 2021 with an area of
0.119 ha (Figure 2).

Landslides encountered in the field are clas-
sified as traditional landslides because the rocks
that move in their plane form flat or undulating
slopes. The results of data processing will contin-
ue with topology test analysis to overcome errors,
which are then converted into raster data, which
will later be used as a database in modeling. The
data division used to validate the model success
rate in calculating the landslide opportunity value
is 70% for model training data of 131 pixels and
30% for validation data of 44 pixels, with a total
of 175 pixels out of the total pixels of the Biang
Loe watershed of 4,746.05 pixels (Figures 3, 4).

Causative factors of landslides

There are 9 (nine) maps of landslide occur-
rence factors. The factors used in this study were
the causes of landslide vulnerability selected from
the literature, data availability, and conditions of
the research site (Figure 5).

Frequency ratio (FR)

When the frequency values of the ratio and
normalization values with the factors causing
landslides are shown in Table 1, the highest FR
value is found for the curvature factor of the earth
in the concave class, with an FR value of 3.51,
which indicates that this class has a very high
chance of landslide events. This finding is in line
with the findings of Rasyid et al., (2016), who re-
ported that the FR ratio value is correlated with
landslides and each class of landslide-causing
factors in a numerical format.

2020 2021 2022

Year

Figure 2. Graph of the number of landslide events in the Biang Loe watershed
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Figure 3. Form of interpretation of landslide events: (a) prediction via Google Earth Pro,
(b) actual validation in the field
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Figure 4. Map of the distribution of landslide events

Artificial neural network (ANN)

The final landslide vulnerability map is multi-
plied by each causative factor calculated through
ANN analysis and then overlayed from these lay-
ers via the multilayer perceptron (MLP) formula
with ten repetitions. From these data, the best rep-
etition results to be taken are in the 7th (seventh)
trial. The final result is determined by the LSI and
tested for its validation level.

Table 2 shows that the repetition values of all
the factors can affect the occurrence of landslides
in this region. However, several factors strongly
influence this incident. If you look at the factors
that are very influential, namely, the curvature of

the earth, the slope, the direction of the slope, the
distance from the river and lithology. This can be
attributed to the value of these factors becoming
more dominant and being able to adjust to the
ANN model. The ANN equation obtained in the
7th test is as follows.

LSIANN, = (0.082) (ANN

iterasi

+ (0096) (ANN Ketinggian
+(0.126) (ANN

+
Tutupan Lahan)

) + (0076) (ANN Curah Huian) +
Arah Lereng) + (0 106) (ANN Litologi) +
+(0.145) (4NN, ) + (0.149) (ANN
+ (O 1 26) (ANN Jarak Dari Sunga[)
+(0.093) (ANN ) (5)

Jarak Dari Patahan

Kelengkungan Bumi)
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Figure 5. Map 9 landslide factors: (a) land cover, (b) lithology, (c) elevation, (d) distance from river, (¢) rainfall,
(f) distance from fault, (g) curvature, (h) slope and (i) aspect

The landslide vulnerability index value from
the LSI ANN in Figure 8 is the best range from
0.437-1.970, and the landslide wvulnerability
index map is input and classified into 5 (five)
classes via tools (natural breaks). The results of
the data processing produce classes ranging from
very low, low, medium, high and very high to
landslide vulnerability (Figure 6).

Validation

Validation is carried out via the receiver op-
erating characteristic (ROC) curve for multiclass
classification. The result of this validation is the
accuracy of the prediction evaluated on the basis
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of the area under the curve (AUC). In the research
of Samanta et al., (2018), the AUC is considered
a pe indicator in support of model prediction. The
next stage involves the results of the ROC analysis,
which is validated. Validation 1 is used to deter-
mine the success rate of the model from the ANN
value, and validation 2 is used to determine the pre-
diction level of the model against landslide events.
The curve of the validation results obtained from
SPSS software with ROC analysis of the Biang
Loe watershed is shown in Figure 7 and Table 3.
Table 3 shows the results of ANN modeling
on landslide events, with values of 0.809 for the
model success rate and 0.745 for the model pre-
diction rate. The predictive performance of the
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Table 1. FR values and normalization values with landslide-causing factors

No Parameter Class Pixel (nm) | %Pixel (nm) | PxcL (nm) | %PxcL (nm) FRI N FR
Primary forest 70.836 14.93 42 32.06 2.15 0.66
Secondary forest 19.041 4.01 17 12.98 3.23 1.00
Settlement 28.064 5.91 0 0.00 0.00 0.00
Dryland agriculture 38.414 8.09 6 4.58 0.57 0.17
1 Land cover
Mixed dryland agriculture 204.132 43.01 17 12.98 0.30 0.09
Paddy 29.717 6.26 4 3.05 0.49 0.15
Bushes 76.109 16.04 45 34.35 2.14 0.66
Water body 8.266 1.74 0 0.00 0.00 0.00
Qac 4.664 0.98 0 0.00 0.00 0.00
2 Lithology Qlv 337.180 71.05 121 92.37 1.30 1.00
Qlvb 132.735 27.97 10 7.63 0.27 0.21
0-8 74712 15.74 8 6.11 0.39 0.13
8-15 93.102 19.62 6 458 0.23 0.08
3 Slope (%) 15-25 115.489 24.34 22 16.79 0.69 0.23
25-45 103.705 21.85 23 17.56 0.80 0.27
>45 87.571 18.45 72 54.96 2.98 1.00
Concave 24.803 5.23 24 18.32 3.51 1.00
4 Curvature Fl;at 72.408 15.26 16 12.21 0.80 0.23
Convex 377.368 79.52 91 69.47 0.87 0.25
0-250 85.947 18.11 9 6.87 0.38 0.21
250-500 101.231 21.33 8 6.11 0.29 0.16
5 E'(fr‘]’:;il‘)’“ 500-750 79.651 16.78 10 7.63 0.45 0.25
750-1000 62.191 13.10 30 22.90 1.75 0.95
>1000 145.559 30.67 74 56.49 1.84 1.00
0-20 50.658 10.67 16 12.21 1.14 0.70
20-40 40.083 8.45 16 12.21 1.45 0.88
¢ | Distance from 40-60 41.919 8.83 19 14.50 1.64 1.00
river (m) 60-80 37.659 7.94 13 9.92 1.25 0.76
80-100 37.788 7.96 5 3.82 0.48 0.29
>100 266.472 56.15 62 47.33 0.84 0.51
0-500 19.828 418 0 0.00 0.00 0.00
500—1000 6.835 1.44 2 1.53 1.06 0.61
7 Disft:L:‘ltc‘(er:fm 10001500 6.261 1.32 3 2.29 1.74 1.00
1500-2000 7.779 1.64 0 0.00 0.00 0.00
>2000 433.876 91.42 126 96.18 1.05 0.61
North 28.485 6.00 18 13.74 2.29 1.00
Northeast 58.995 12.43 24 18.32 1.47 0.64
Timur 63.366 13.35 19 14.50 1.09 0.47
Southeast 60.044 12.65 6 4.58 0.36 0.16
8 Aspect South 58.199 12.26 9 6.87 0.56 0.24
Southwest 57.698 12.16 12 9.16 0.75 0.33
West 62.249 13.12 21 16.03 1.22 0.53
Northwest 57.521 12.12 12 9.16 0.76 0.33
Datar 28.022 5.90 10 7.63 1.29 0.56
2261,00-2423,77 69.571 14.66 9 6.87 0.47 0.24
2423,77-2586,54 75.169 15.84 5 3.82 0.24 0.12
9 Rai”fs'r')(mm/ 2586,54-2768,09 110.600 23.30 10 7.63 0.33 0.17
2768,09-2930,86 196.643 41.44 107 81.68 1.97 1.00
2930,86-3059,19 22.596 4.76 0 0.00 0.00 0.00

Note: Pxcl (nm) is the number of pixels of the landslide, the number of pixels of pixel class n on the parameter and
N FR is the normalization of the FR value.
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Table 2. ROC repetition values for ANN modeling

Iteration
Landslide factors
1 2 3 4 5 6 7 8 9 10
Land cover 0.182 0.127 0.149 0.094 0.133 0.135 0.082 0.086 0.139 0.115
Elevation 0.130 0.171 0.123 0.072 0.111 0.094 0.096 0.072 0.084 0.094
Rainfall 0.124 0.136 0.097 0.145 0.137 0.102 0.076 0.121 0.090 0.135
Aspect 0.086 0.101 0.085 0.115 0.158 0.114 0.126 0.132 0.194 0.178
Lithology 0.032 0.058 0.027 0.045 0.059 0.043 0.106 0.148 0.060 0.026
Slope 0.192 0.139 0.102 0.106 0.107 0.087 0.145 0.099 0.205 0.183
Curvature 0.087 0.042 0.126 0.080 0.084 0.147 0.149 0.189 0.021 0.042
Distance from river 0.117 0.125 0.186 0.154 0.141 0.164 0.126 0.036 0.148 0.117
Distance from fault 0.050 0.101 0.105 0.187 0.069 0.113 0.093 0.117 0.059 0.110
I I - i b | A
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Figure 6. Landslide vulnerability index map for the ANN method
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Figure 7. (a) ANN success rate and (b) prediction rate accuracy test curves

ANN model in this study (AUC: 0.809) aligns
with the findings of Saha et. all (2022), who
observed that neural networks provide a higher
degree of accuracy in complex mountainous wa-
tersheds due to their ability to model non-linear
interactions between slope and hydrology.

Landslide vulnerability map

This landslide vulnerability map is calculated
on the basis of the analysis of the LSI value, which
is then validated through the iteration step and then
continues with the step of finding the NGO value
via the class division method through the classi-
fication of natural break tools. Natural breaks are
a grouping of similar values in maximizing the
difference between classes (Moreira et al., 2021),
which has high accuracy in the division of geo-
graphical environmental units (Basofi et al., 2015).

Table 4 shows that the landslide vulnerability
index in the Biang Loe watershed can be divided
into 5 (five) vulnerability classes. The most dom-
inant landslide vulnerability is in the very low
class, with areas of 1,226.30 Ha or 25.84% of the
watershed area. The second is in the low class,
which has an area of 1,165.04 Ha or 24.55% of
the watershed area. Third, the high class has an
area of 865.36 ha or 18.23% of the watershed area.
Fourth, the medium class has an area of 816.21 ha
or 17.20% of the watershed area. Fifth, the very
high class has an area of 673.12 or 14.18% of the
watershed area. On the basis of the level of vul-
nerability, the predominant parameters for each
parameter are presented in Table 5.

Table 5 shows that in the first class, the
landslide wvulnerability is very low, dominated
by an elevation of 0-250 m asl, the land cover
of the mixed farming area, with a rainfall of

Table 3. ANN modeling AUC values from the ROC analysis results for the success rate and prediction

No | Validation AUC value
1 2 3 4 5 6 7 8 9 10
1 Success 0.796 0.799 0.803 0.803 0.807 0.809 0.805 0.808 0.804 0.805
2 | Predictions | 0.734 0.733 0.742 0.736 0.737 0.745 0.737 0.744 0.732 0.732
Table 4. Vulnerability index values and classes

No | Vulnerability index value | Landslide vulnerability classes | Number of pixels Area (Ha) (%)

1 1.82-3.14 Very low 121.610 1.226,30 25.84

2 3.14-4.12 Low 116.908 1.165,04 24.55

3 4.12-5.17 Keep 81.580 816.21 17.20

4 5.17-6.19 High 86.930 865.36 18.23

5 6.19-8.66 Very high 67.551 673.12 14.18

Sum 474.579 4.746,05 100
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Figure 8. Map of the vulnerability level of landslides in the Biang Loe watershed

Table 5. Parameters that influence landslide vulnerability

Vulnerability classes
Parameter Very low Low Keep | Tall | Very high
Elevation 0-250 m asl 500-750 m asl >1000 m asl
Land cover Mix farming area Scrubland | Primary and secondary forest
Rainfall 2,261.00-2,423.77 mmlyr 2’586'54'2;,168'09 mm/ 2,768.09-2,930.86 mm/yr
Aspect Southeast East North and Northeast
Lithology Qac dan Qlvb Qlv
Slope 0-8% 15-25% 25-45% >45%
Curvature Concave
Distance from river 40-60 m
Distance from fault 1500-2000 m

2,261.00-2,423.77 mm/year, the direction of the
southeast slope, the lithology of the Qac and Qlvb,
the slope of 0-8%, concave curvature, the distance
from the river 40—60 m and the distance from the
fault of 15002000 m. In the second class, low
landslide vulnerability is dominated by an eleva-
tion of 500— 750 m asl, mixed farming area land
cover, rainfall of 2,585.54-2,768.09 mm/yr, east
slope direction, Qlv lithology, slope 15-25%,
concave curvature, distance from the river 40-60
m and distance from faults 1500-2000 m. In the
third class, landslide vulnerability is dominated
by an elevation of >1000 m asl, shrubland cover,
rainfall of 2,768.09-2,930.86 mm/yr, direction of
the northern and northeastern slopes, lithology of
the Qlv, slope of 25-45%, concave curvature, and
distance from the river 40—60 m. Based on the
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Table 5 show the more affect the occurrence of
landslides in the Biang Loe watershed are aspect,
lithology, slope, curvature and distance from the
river. Furthermore, our findings regarding factor
dominance mirror regional observations in South
Sulawesi; for instance, Asdar et al. (2021) identi-
fied that slope steepness and lithology were prima-
ry drivers of instability in the nearby Tangka Wa-
tershed using the Frequency Ratio method. While
different statistical approaches were utilized, the
convergence of results highlighting topography
and geology as dominant predictors across both
the Biang Loe and Tangka watersheds suggests
a consistent geomorphic behavior in the region.
This validates the robust generalization capabili-
ties of the ANN approach for localized disaster
management and spatial planning in Indonesia.
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CONCLUSIONS

The analysis of landslide distribution in the
Biang Loe watershed over the last five years re-
vealed a total of 103 distinct incidents, peaking
in 2018, with 31 events covering 0.723 hectares.
Through the application of the ANN model, this
study determined that the structural predisposition
for soil instability in this region is driven primarily
by five dominant causative factors: aspect, lithol-
ogy, slope steepness, curvature, and proximity to
river systems. These results align with contempo-
rary regional geomorphic behavior, confirming
that high-resolution topographic and geological
factors remain the primary predictors of landslide
initiation in the South Sulawesi landscape.

In terms of spatial susceptibility, the ANN
model demonstrated high predictive reliability in
identifying critical zones of instability. The “high”
vulnerability category accounts for 18.37% of the
area, whereas the “very high” category encompass-
es 15.48%, representing zones where steep gradi-
ents and specific lithological formations intersect.
Consequently, the resulting landslide susceptibility
map provides a critical data-driven framework for
regional risk management, offering actionable in-
sights for local authorities to prioritize slope sta-
bilization and refine spatial planning policies to
reduce potential human and economic losses.
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