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INTRODUCTION

Global climate change has become a major 
catalyst accelerating the hydrological cycle and 
triggering an increase in the frequency and inten-
sity of hydrometeorological disasters worldwide. 
Global warming has altered rainfall patterns, 
making them more extreme and difficult to predict 
(Totz et al., 2017). In tropical archipelagic regions 

such as Indonesia, this threat is compounded by 
the complex interaction between steep topogra-
phy and regional climate variability. The increas-
ing recurrence of catastrophic floods in these re-
gions indicates a critical failure of the existing en-
vironmental protection infrastructure, suggesting 
that current mitigation strategies, which are often 
reactive and reliant on static historical data, are 
insufficient. This necessitates an urgent paradigm 
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shift in environmental engineering towards pre-
cise, technology-driven spatial modeling that can 
account for dynamic climatic shifts.

The Takkalasi watershed in South Sulawesi 
province exemplifies this eco-hydrological vul-
nerability. As a small-scale catchment (<100 
km²), it exhibits a characteristic “flashy” hydro-
logical response, where the combination of steep 
upstream terrain and a short flow path results in 
the rapid conversion of rainfall into surface run-
off (Ibarreche et al., 2020). Consequently, the wa-
tershed frequently experiences hydraulic failure, 
where peak discharges exceed the channel capac-
ity within hours of a storm event. This rapid onset 
leaves a dangerously narrow window for warning 
and evacuation, exposing downstream agricultur-
al lands and settlements to severe environmental 
degradation and economic losses. The recurrence 
of these events highlights the urgent need for sus-
tainable environmental monitoring systems that 
can operate in real time.

Despite the urgency, flood mitigation plan-
ning in the Takkalasi watershed faces fundamen-
tal methodological limitations. Previous studies 
and engineering practices in this region have 
largely relied on conventional hydrologic-sta-
tistical methods, such as the rational method or 
synthetic unit hydrograph (Brunner et al., 2018). 
While effective for point-based estimation in hy-
draulic structure design, these deterministic ap-
proaches exhibit significant weaknesses for mod-
ern disaster management: (1) they are inadequate 
for mapping the spatial distribution of inundation 
required for zoning; (2) they depend heavily on 
rainfall and stream gauge data, which are often 
sparse or damaged in developing countries (data-
scarce regions); and (3) they assume “stationar-
ity,” a concept no longer valid in the climate crisis 
era (Khan et al., 2011).

The absence of accurate risk models owing 
to data scarcity hinders local governments from 
formulating adaptive policies. To address this 
technological gap, computer modeling and IT ap-
plications based on machine learning (ML) have 
emerged as promising paradigms in environmen-
tal engineering. Unlike rigid physical models that 
require extensive parameterization (e.g., river 
geometry for HEC-RAS), ML algorithms such 
as random forest (RF) are specifically selected in 
this study because of their ensemble nature, which 
effectively handles high-dimensional, non-linear 
environmental data without succumbing to over-
fitting, a common pitfall in single-decision tree 

models (Youssef et al., 2022). Crucially, this ap-
proach offers the flexibility to integrate Big Data 
from remote sensing. Sentinel-1 synthetic aper-
ture radar (SAR) imagery, for instance, provides a 
decisive advantage by detecting flood inundation 
through cloud cover, which is a persistent limi-
tation of optical imagery in the tropics, thereby 
generating objective flood inventory data without 
reliance on subjective manual reporting.

Moreover, the use of machine learning in en-
vironmental engineering goes beyond achieving 
predictive accuracy; it requires interpretability to 
inform physical actions (Giudici et al., 2023). The 
‘black-box’ nature of sophisticated algorithms of-
ten impedes their use in policymaking. To address 
this issue, this study utilized explainable artificial 
intelligence (XAI) with SHapley Additive exPla-
nations (SHAP) to break down the decision-mak-
ing process of the Random Forest model. This 
method enables a detailed assessment of how spe-
cific physical factors, such as vegetation density 
compared to rainfall, affect hydraulic failure. This 
diagnostic ability is crucial for developing precise 
bioengineering solutions, shifting from broad 
hazard zoning to focused landscape restoration.

However, a review of the global literature re-
veals significant research gaps. Most ML applica-
tion studies for floods have focused on large-scale 
watersheds or subtropical regions with abundant 
data availability (Wang et al., 2024). There is a 
paucity of research examining the reliability of 
these advanced methods for small-scale tropical 
watersheds (<100 km²), which are characterized 
by rapid hydrological responses but suffer from 
severe data scarcity. Consequently, these vulnera-
ble areas often bear the brunt of flash floods. This 
study aims to fill this critical knowledge gap by 
establishing a novel high-precision flood vulner-
ability mapping framework specifically tailored 
for data-scarce small-scale tropical watersheds. 
The central hypothesis of this study is that by in-
tegrating high-resolution SAR imagery with an 
optimized random forest algorithm, it is possible 
to achieve a prediction accuracy exceeding 90%, 
which significantly surpasses traditional models, 
solely using open-source remote sensing data. 
Specifically, this study seeks to demonstrate that 
(1) the proposed ML-based model can accurately 
identify micro-scale hazard zones that are invis-
ible to coarse regional models, and (2) in small 
“flashy” catchments, physical land characteristics 
(such as vegetation density) exert a more domi-
nant control over flood vulnerability than local 
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rainfall variability, a finding that would funda-
mentally shift engineering mitigation strategies 
from structural to ecological approaches.

MATERIALS AND METHODS

Study area

This study focused on the Takkalasi water-
shed, a critical ecological unit situated in Barru 
regency, South Sulawesi, Indonesia, geographi-
cally centered at 119° 41’ 50.082” E. Spanning 
an area of approximately 9.317 ha, the water-
shed operates under a tropical monsoon climate 
regime, exhibiting a pronounced seasonality 
with a high-intensity wet season typically occur-
ring between November and April. Geomorpho-
logically, the area is characterized by a dramatic 
topographic gradient (Figure 1), transitioning 
rapidly from rugged, mountainous upstream re-
gions, which serve as the primary source areas, 
to the low-lying downstream alluvial plains, 
where the Takkalasi River eventually discharges 
into the Makassar Strait. This steep morphologi-
cal configuration results in a short concentration 
time, generating a high potential energy for sur-
face runoff during storm events. Furthermore, 
the land cover gradient, moving from upstream 

vegetation to downstream intensive agricultural 
zones and settlements, creates a complex inter-
action between natural flow paths and anthropo-
genic activities. When coupled with the intense 
precipitation characteristic of the monsoon, these 
hydromorphological features render the down-
stream communities particularly susceptible to 
flash floods and riverine inundation, underscoring 
the necessity for urgent and precise environmen-
tal protection measures.

Data acquisition and framework

This study was structured using a compre-
hensive and systematic methodological workflow 
designed to ensure reproducibility and robust-
ness in environmental modeling. The framework 
(Figure 2) operates on a modular “Input-Process-
Output” architecture, primarily executed within 
the google earth engine (GEE) cloud computing 
environment to efficiently handle large-scale geo-
spatial datasets. The workflow is divided into four 
main sequential stages: (1) multi-source data ac-
quisition and advanced image pre-processing; (2) 
construction of physical predictor variables and 
derivation of a historical flood inventory; (3) de-
velopment and training of the spatial model using 
the Random Forest algorithm; and (4) rigorous 
model performance evaluation and quantitative 

Figure 1. Study area map of the Takkalasi watershed in Barru regency, South Sulawesi
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analysis of flood determinants using explainable 
AI. Flood inventory mapping was conducted in 
GEE using Sentinel-1 SAR imagery and adaptive 
Change Detection, while the random forest ma-
chine learning model was implemented and pro-
cessed in Python using the Scikit-learn library to 
ensure flexibility, reproducibility, and integration 
with advanced statistical validation libraries.

A comprehensive array of validated global 
datasets was incorporated to underpin this data-
driven framework. The target variable (Y), indic-
ative of historical flood occurrences, was derived 
from high-resolution (10-meter) Sentinel-1 SAR 
imagery spanning the period 2019–2025, employ-
ing an adaptive Change Detection method. The 
predictor variables (X) were organized into four 
principal environmental clusters to encapsulate 
the multifaceted nature of flood risk: Topographic 
data – high-precision variables, including eleva-
tion, slope, topographic wetness index (TWI), 

and height above nearest drainage (HAND), were 
derived from the 8-meter resolution National Dig-
ital Elevation Model (DEMNAS). Land physical 
characteristics: land cover and vegetation density 
(NDVI) were extracted from 10-meter resolution 
Sentinel-2 MSI optical imagery. Climatic Vari-
ables – daily rainfall data were obtained from the 
Climate Hazards Group InfraRed Precipitation 
with Station data (CHIRPS) dataset, which pro-
vides a spatial resolution of 0.05° (~5.5 km). An-
thropogenic and soil factors – distance to rivers 
and road networks were derived from the 1:25,000 
scale Indonesian Topographic Map (RBI), and 
soil properties were obtained from a 1:250,000 
scale RePPProT map. To ensure spatial consis-
tency and compatibility for the machine learning 
analysis, all raster datasets were resampled and 
aligned to a uniform 10-meter pixel resolution 
using the nearest-neighbor method. This rigor-
ous data standardization process ensured that the 

Figure 2. Research methodology flow – integration of remote sensing data and machine learning
for flood hazard mapping
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model input represented a coherent spatial ma-
trix, facilitating precise pixel-based classification.

Flood inventory using SAR imagery

Precise flood susceptibility mapping (FSM) 
relies heavily on the quality of the training data. 
To overcome the limitations of optical imagery in 
cloud-prone tropical regions, this study utilized 
the GEE platform to process Sentinel-1 ground 
range detected (GRD) imagery. The inventory was 
constructed by analyzing seven significant flood 
events that occurred between 2019 and 2025 (Ta-
ble 1). The image processing workflow included: 
(1) thermal noise removal and radiometric cali-
bration; (2) speckle filtering using the Refined Lee 
filter to reduce noise while preserving water body 
edges; and (3) terrain correction to rectify geomet-
ric distortions. Flood detection was performed us-
ing a Change Detection approach by comparing 
the “Target Period” (flood event) and “Baseline 
Period” (dry conditions). A random forest classifi-
er trained with samples from the JRC Global Sur-
face Water dataset was applied to distinguish flood 
inundation from permanent water bodies. The fi-
nal dataset consisted of 20,000 stratified sample 
points (10.000 flood and 10.000 non-flood) split 
into 70% for training and 30% for testing.

Flood conditioning factors

Flooding occurs as a result of complex inter-
actions between landforms, water flow, surface 
characteristics, weather, and anthropogenic ac-
tivities (Lyu et al., 2018). To comprehensively 
model flood risk in the Takkalasi watershed, this 
study selected ten variables representing topo-
graphic, hydrological, and ecological engineer-
ing factors processed using GEE at a 10-meter 
resolution. Topographic factors include elevation 
(Figure 3a), which indicates vulnerability to water 

accumulation in lowland areas owing to gravity, 
and slope (Figure 3b), which controls the speed of 
water flow, where flat terrain slows runoff and trig-
gers ponding (Hou and Gao, 2019). The analysis 
also included the topographic wetness index (Fig-
ure 3c) to identify soil saturation zones, as well 
as the height above nearest drainage (Figure 3d), 
which measures the vertical proximity of areas to 
drainage channels. From a hydrological perspec-
tive, the distance to river (Figure 3e) was used as 
the main indicator of fluvial overflow risk. Physi-
cal land characteristics are represented by the nor-
malized difference vegetation index (Figure 3f), 
indicating the surface roughness of vegetation; 
land cover (Figure 3g), distinguishing between 
permeable and impermeable areas; and soil type 
(Figure 3h), which determines the natural infiltra-
tion capacity (Dahigamuwa et al., 2016).

In addition to the physical factors of the land, 
meteorological and anthropogenic elements are 
also considered triggers and differentiators of 
risk. Climatic factors are represented by the aver-
age rainfall (Figure 3i) from the CHIRPS dataset, 
which highlights the importance of precipitation 
variability as a primary input in the hydrological 
system (Cerón et al., 2020). Finally, the influence 
of human activity was examined using the variable 
distance to road (Figure 3j). Road infrastructure is 
often correlated with built-up areas that have low 
infiltration, and the structure of road embankments 
can alter natural flow patterns, acting as barriers 
that exacerbate local floods (Douglas et al., 2008). 
All of these spatial variables were normalized and 
integrated into the machine learning model to pre-
cisely detect flood vulnerability patterns.

Random forest hazard modeling

Spatial prediction was performed using the 
RF algorithm, an ensemble learning method that 
is robust against overfitting in high-dimensional 

Table 1. Sentinel-1 data acquisition period for the flood inventory
Year Target period (flood events) Baseline period (dry conditions)

2019 20 January–31 January 01 August–31 August

2020 18 December–28 December 20 November–30 November

2021 01 December–20 December 01 August–25 August

2022 01 December–30 December 01 August–30 August

2023 01 January–28 February 01 August–30 August

2024 01 January–30 January 01 August–30 August

2025 01 November–25 December 01 July–31 July
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data (Wu et al., 2024). Unlike standard imple-
mentations, this study explicitly optimized the 
algorithm for spatial hazard modeling by imple-
menting a balanced sampling strategy using strat-
ified sampling with a 1:1 ratio between flood and 
non-flood pixels in the training dataset. The mod-
el configuration included fine-tuning hyperpa-
rameters: the number of trees (n_estimators) was 
set to 500 to ensure stability, and the maximum 
tree depth (max_depth) was limited to 25 to pre-
vent overfitting while capturing complex, nonlin-
ear interactions. The Gini Impurity criterion was 
used for node splitting. The prediction function 
for a new class (x') is formulated as Equation 1:

	 𝑦𝑦 = mode{𝑇𝑇𝑏𝑏(𝑥𝑥′)}𝑏𝑏=1
𝐵𝐵  

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹  

 

𝐹𝐹1-𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

 

FPR = 1 − specificity = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹 +  𝑇𝑇𝑇𝑇 

 

ROC − AUC = ∫ TPR(FPR)𝑑𝑑(FPR)
1

0
 

 

𝑛𝑛 = 𝑍𝑍2 ⋅ 𝑝𝑝 ⋅ 𝑞𝑞
𝑒𝑒2  

 

ϕ𝑖𝑖 = ∑
|𝑆𝑆|! (|𝐹𝐹| − |𝑆𝑆| − 1)!

|𝐹𝐹|!
𝑆𝑆⊆𝐹𝐹∖{𝑖𝑖}

 

[𝑓𝑓(𝑆𝑆 ∪ {𝑖𝑖}) − 𝑓𝑓(𝑆𝑆)] 

 

 

	 (1)

where:	 a Tb(x') is the class output of the b-th tree, 
and (B) is the total number of trees. 

The configuration and training of the model 
in the Python script (Scikit-learn) are carried 
out by implementing a balanced sampling strat-
egy using stratified sampling with a 1:1 ratio to 
address data imbalance between flood and non-
flood pixels. Meanwhile, the optimized hyperpa-
rameters set the number of trees (n_estimators) 
to 500, with the tree depth (max_depth) limited 
to 25 to prevent overfitting, and the Gini Impu-
rity criterion was used for splitting. To enhance 
the transparency and credibility of the methodol-
ogy, the actual computational implementation is 
shown in Figure 4. This figure displays the Python 
code snippet utilized for configuring the random 

forest classifier and SHAP analysis, confirm-
ing the application of specific hyperparameters 
(class_weight=’balanced’, n_estimators=500) 
rather than default settings.

Model evaluation and validation

Model validation was conducted using 70% 
of the training set and 30% of the test set. The 
evaluation employed A confusion matrix was 
used to compute the performance metrics.

Confusion matrix

The performance of the classification model 
was fundamentally assessed using a confusion 
matrix, which compared the predicted class-
es with the actual ground truth (Pomme et al., 
2022). It consists of four key components: true 
positive (TP), which represents flood pixels cor-
rectly identified by the model; true negative (TN), 
which denotes non-flood pixels correctly classi-
fied as safe; false positive (FP), which indicates 
non-flood pixels incorrectly predicted as flood 
(Type I error); and false negative (FN), which re-
fers to actual flood pixels that the model failed to 
detect (Type II error).

Accuracy

The percentage of accurate predictions across 
all regions serves as an indicator of the model’s 
efficacy in distinguishing areas of high and low 

Figure 3. Spatial distribution of the ten flood conditioning factors used in the random forest model: (a) elevation, 
(b) slope, (c) topographic wetness index (TWI), (d) height above nearest drainage (HAND), (e) distance to river, 

(f) normalized difference vegetation index (NDVI), (g) soil type, (h) average rainfall, and (i) distance to road
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vulnerability (Williams et al., 2024), as defined 
in Equation 2:

	

𝑦𝑦 = mode{𝑇𝑇𝑏𝑏(𝑥𝑥′)}𝑏𝑏=1
𝐵𝐵  

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹  

 

𝐹𝐹1-𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

 

FPR = 1 − specificity = 𝐹𝐹𝐹𝐹
𝐹𝐹𝐹𝐹 +  𝑇𝑇𝑇𝑇 

 

ROC − AUC = ∫ TPR(FPR)𝑑𝑑(FPR)
1

0
 

 

𝑛𝑛 = 𝑍𝑍2 ⋅ 𝑝𝑝 ⋅ 𝑞𝑞
𝑒𝑒2  

 

ϕ𝑖𝑖 = ∑
|𝑆𝑆|! (|𝐹𝐹| − |𝑆𝑆| − 1)!

|𝐹𝐹|!
𝑆𝑆⊆𝐹𝐹∖{𝑖𝑖}

 

[𝑓𝑓(𝑆𝑆 ∪ {𝑖𝑖}) − 𝑓𝑓(𝑆𝑆)] 

 

 

	 (2)

Precision

The accuracy of positive predictions is cru-
cial for minimizing false alarms when forecasting 
floods, as defined in Equation 3: 

	

𝑦𝑦 = mode{𝑇𝑇𝑏𝑏(𝑥𝑥′)}𝑏𝑏=1
𝐵𝐵  

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹  

 

𝐹𝐹1-𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 
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Recall

Recall is defined as the ratio of correctly 
identified flood-prone areas to the total number 
of actual flood-prone areas, serving as an indica-
tor of the effectiveness of a method in identifying 

all genuine flood-prone areas. It is computed by 
dividing the number of flood-prone areas accu-
rately identified by the method by the total num-
ber of actual flood-prone areas (Taherizadeh et 
al., 2023), as shown in Equation 4:
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F1-Score

The F1-score assesses a model’s balance by 
incorporating both precision and recall, thereby fa-
cilitating the accurate identification of flood-prone 
areas by reducing false positives and negatives 
(Tsumita et al., 2025), as expressed in Equation 5: 
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Figure 4. Python implementation screenshot: (a) configuration of the optimized random forest model
and (b) SHAP analysis
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AUC-ROC

The receiver operating characteristic (ROC) 
technique was employed to evaluate the model’s 
performance by calculating the area under the 
curve (AUC). The ROC technique is among the 
most prevalent methods for assessing the accu-
racy of predictive models (Centor and Schwartz, 
1985). The ROC curve compares the true posi-
tive rate (sensitivity) with the false-positive rate 
(1-specificity) at different thresholds. This pro-
vides a complete picture of the model accuracy, 
as shown in Equations 6 and 7:
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Ground check sampling

To physically validate the map results in the 
field, the minimum sample size ($n$) was deter-
mined using the Cochran Formula to ensure statis-
tical representativeness at a 90% confidence level 
(Zhao et al., 2014). is defined as in Equation 8:
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Flood predictors significance

Variable importance

The significance of the flood predictors was 
evaluated by examining the feature importance 
characteristics of the Random Forest model. This 
analysis employed the feature_importances_ at-
tribute available in the Scikit-learn Python library, 
which offers insights into the relative contribution 
of each predictor variable to the predictive perfor-
mance of the models (Ghanim et al., 2023). This 
methodology is essential in flood studies because 
it allows researchers to identify the most influen-
tial factors contributing to flood susceptibility and 
quantify their impact on flooding.

SHapley additive exPlanations (SHAP)

SHAP, developed by Lundberg and Lee, iden-
tifies the most significant input features and their 
interactions. In contrast to earlier methodolo-
gies, SHAP uniquely guarantees ‘local accuracy,’ 
thereby addressing issues inherent in other feature 

importance measures (Wang et al., 2024). It pro-
vides a more nuanced understanding than broader 
perspectives. This study used the Shapley value to 
assess feature significance in flood risk and ranked 
features by their contributions. Each point on the 
graph represents a sample’s Shapley value (ϕi) 
with red points indicating higher values and blue 
points denoting lower values. A broader distribu-
tion of points indicates a significant influence on 
flood risk. The features are arranged vertically by 
importance, with the most critical features at the 
top. The average Shapley value indicates the im-
pact of each feature on flood risk. The bar graph 
shows the feature importance, with taller bars in-
dicating substantial positive effects and shorter 
bars indicating a lesser impact. The Shapley value 
is computed as defined in Equation 9.
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where:	ϕi represents the Shapley value for fea-
ture $i$, indicating its contribution to the 
model’s output. F is the complete set of 
input features, while S denotes a subset of 
features excluding i. 

The term f(S) is the prediction of the model 
with the feature subset S, and 𝑓𝑓(𝑆𝑆 ∪ {𝑖𝑖}) 

 

|𝑆𝑆|! (|𝐹𝐹| − |𝑆𝑆| − 1)!
|𝐹𝐹|!  

 is the 
prediction when feature i is included. The weight-

ing factor 

𝑓𝑓(𝑆𝑆 ∪ {𝑖𝑖}) 

 

|𝑆𝑆|! (|𝐹𝐹| − |𝑆𝑆| − 1)!
|𝐹𝐹|!   accounts for all possi-

ble permutations of feature introduction, ensuring 
a fair allocation of the prediction value among the 
constituent features.

RESULTS

Historical flood event inventory

The extraction results from Sentinel-1 SAR 
imagery over a seven-year period (2019–2025) 
using the Adaptive Time-Window Change De-
tection method successfully mapped the spatial 
dynamics of significant flood events in the Takka-
lasi watershed. Data analysis (Figure 5, Table 2) 
showed that fluctuations in the extent of inunda-
tion were strongly correlated with regional cli-
mate anomalies. The peak of extreme flood events 
was recorded in 2022, with an inundation area of 
539.38 ha, contributing 21.52% to the total his-
torical flood footprint. This massive event coin-
cided with a moderate La Niña phenomenon that 
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triggered an annual rainfall increase of 3.546 mm. 
Conversely, the lowest inundation extent was re-
corded in 2023 at 64.45 ha (2.57%), reflecting 
dry conditions due to the El Niño phase. These 
findings confirm that radar-based methods can 
capture the sensitivity of watershed hydrological 
responses to climate variability.

Physical predictor variables construction

The training dataset was formed by integrat-
ing the historical flood event map/Y variable (Fig-
ure 6a) with the stack of predictor variables X 
(Figure 6b), resulting in 20,000 stratified sample 
points (50% flood, 50% safe) from a total popu-
lation of 931,793 pixels. The Balanced Stratified 
Random Sampling strategy was used to address 
class imbalance, ensuring that the Machine Learn-
ing model could recognize both flood and safe area 
patterns evenly. Each sample point was extracted 
from locations that were consistently flooded or 
not throughout 2019–2025 and assigned values 
from the 10 main physical variables.

The distribution analysis shown in Figures 7a–
7j provides critical insights into the flood mecha-
nisms specific to small tropical watersheds (<100 
km²). Unlike larger basins, where regional hydrol-
ogy dominates, flood events in the Takkalasi wa-
tershed are strictly confined by micro-topographi-
cal and land cover constraints. Most flood points 
were concentrated at low elevations (<25 masl, 

Figure 7a) and flat slopes (<8%, Figure 7b); howev-
er, they heavily overlapped with sparse vegetation 
areas (NDVI 0.1–0.3, Figure 7f). This distinct pat-
tern confirms the “flashy” nature of the watershed, 
where the absence of upstream vegetative buffers 
leads to a rapid downstream accumulation. The 
consistency between the distribution of the train-
ing samples and the total population strengthened 
the validity of the proposed Random Forest model, 
ensuring that the algorithm learned from physically 
meaningful patterns rather than statistical noise.

Determination of flood causing factors 	
using random forest results

Variable importance

The analysis of variable importance provides 
quantitative insights into the physical parameters 
that are the main drivers of disasters. Based on the 
computational results presented in Table 3, a clear 
hierarchy of influence among the ten predictor vari-
ables has emerged. The NDVI (Vegetation Index) 
ranked highest, with a Mean Importance score 
of 0.3902, followed by slope (0.1988), HAND 
(0.1264), and elevation (0.1174). These four vari-
ables form the “Primary Determinant Cluster”, con-
tributing more than 83% of the model’s predictive 
power. The dominance of NDVI underscores that 
flooding in the Takkalasi watershed is ecologically 
controlled by vegetation cover, which determines 

Figure 5. Maps of annual flood distribution (a-g) and composite inventory results (h) for the period 2019–2025
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infiltration capacity. In contrast, rainfall ranked 
lowest (0.0142), indicating that in small watersheds 
with homogeneous meteorological conditions, 
flood locations are more determined by the land’s 
inability to absorb water (static factors) than by the 
variability of rainfall itself (Zhou et al., 2021).

SHAP dependence analysis

The analysis of the SHAP dependence 
plot (Figure 8) elucidates the nonlinear physi-
cal mechanisms and identifies critical tipping 
points in flood control. The NDVI dependence 
graph indicates a significant increase in extreme 
risk within the range of 0.1–0.3, correspond-
ing to open land or sparse vegetation, which 
is associated with the highest positive SHAP 
value. Conversely, the risk markedly decreased 
to negative at high vegetation densities (>0.7), 
corroborating the role of vegetation in mitigat-
ing surface runoff. A comparable pattern was 

observed in the slope gradient, where the risk 
was concentrated at slopes of less than 8% 
(flat terrain), which were identified as points 
of flow stagnation. Furthermore, the anthropo-
genic variable, distance to road, demonstrated 
an increase in risk within a radius of 100–500 
m, suggesting an impoundment effect due to 
road infrastructure disrupting natural drainage 
patterns. In contrast, the dependency plot for 
rainfall showed very small SHAP value fluctua-
tions around zero, confirming its limited role as 
a spatial differentiator at the local level.

Spatial flood hazard analysis

The concluding phase of hazard modeling 
entails transforming flood probability data (Fig-
ure 9) into practical zoning maps. Utilizing the 
probability figures produced by the random forest 
algorithm for each 10-meter pixel, reclassification 
was performed using the Natural Breaks (Jenks) 

Table 2. Relationship between flood inundation areas and average annual rainfall (2019–2025)
Year Flood area (ha) Average rainfall (mm/year)

2019 175.22 1869.59

2020 385.10 2814.35

2021 483.11 3134.54

2022 539.38 3546.24

2023 64.45 1779.64

2024 412.45 2758.43

2025 447.03 2814.89

Figure 6. Spatial distribution of training data: (a) distribution of binary sample points (flood/safe);
(b) extraction of multiparameter values (variable X) at sample points
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method. This process organizes the data into five 
standard interval categories, illustrating the risk 
gradient from “very low” to “very high.” Figure 
8b shows the resulting flood vulnerability map.

Spatial statistical analysis (Table 4) showed 
unique risk distribution characteristics in the Tak-
kalasi watershed. Most of the area (79.79% or 
7.434 ha) is classified as a safe zone (very low), 

Figure 7. Comparison of data distribution between training sample and total population: (a) elevation,
(b) slope, (c) topographic wetness index (TWI), (d) height above nearest drainage (HAND), (e) distance to river, 

(f) normalized difference vegetation index (NDVI), (g) land cover, (h) soil type, (i) average rainfall,
(j) distance to road
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generally located in the upstream region with 
steep topography that functions as a runoff zone. 
However, zones with very high vulnerability con-
stitute a significant proportion, reaching 11.59% 
(1,080.24 ha). This extreme polarization between 
the safe and high-hazard zones is a typical indi-
cator of a watershed with a rapid hydrological 
response, where water from the upstream area is 
directly accumulated in the downstream flat area 
without a wide transitional zone.

Model performance evaluation

Ground truth

Field validation was conducted at 188 sample 
locations using Cochran’s formula with 90% confi-
dence to confirm the accuracy of the flood inventory 
map from Sentinel-1 imagery. This process ensures 
that the training data accurately reflect real-world 
conditions. According to the confusion matrix from 
the field validation (Figure 10), this radar-based 
inventory method achieved an overall accuracy of 
91.5%. Of the 89 points identified as flood areas, 
81 were verified as actual flood sites (true positive) 
through water marks and resident interviews. Only 
eight points were detection errors (false positives). 
Analysis showed that these false positives occurred 
mainly in irrigated rice fields during inundation, 
exhibiting radar reflections similar to river over-
flow floods (Phan et al., 2019). This low error rate 
(<10%) confirms that the Sentinel-1 inventory data 
are valid for training the random forest model.

Random forest model evaluation

Following physical validation, the random 
forest model underwent a statistical assessment 
using a 70:30 data split on a separate test dataset 

to evaluate its ability to generalize. As explicitly 
demonstrated in the receiver operating charac-
teristic (ROC) analysis (Figure 11), the model 
achieved an exceptional area under curve (AUC) 
score of 0.9849. This statistical metric confirms 
the model’s superior capability to distinguish be-
tween flood and non-flood classes with high pre-
cision, far surpassing the standard benchmarks. 
The predictive performance was further substan-
tiated by an overall accuracy of 94.45% and a pre-
cision score of 92.45%, indicating a very low rate 
of false-positive alarms.

Crucially, the model achieved a recall value 
of 96.80%. In the context of disaster manage-
ment, this metric is of paramount importance, as 
it signifies that the model successfully detected 
nearly 97% of all actual flood events, minimiz-
ing the risk of “missed targets” (false negatives) 
that could have catastrophic consequences for 
community safety. The high recall of the Ran-
dom Forest model demonstrates its robustness in 
capturing spatial patterns and environmental sig-
nals that distinguish flood-prone areas from safe 
zones. This was reinforced by the AUC-ROC 
score of 0.9849 (Figure 12), which indicates ex-
cellent separability between the flood and non-
flood classes. Such a high AUC value confirms 
the model’s accuracy across probability thresh-
olds, making it adaptable to various scenarios. 
The combination of high accuracy, precision, re-
call, and near-perfect AUC establishes the Ran-
dom Forest model as a powerful tool for early 
warning systems. This provides decision-makers 
with confidence that the model can be deployed 
in flood management strategies, supporting pro-
active mitigation, resource allocation, and com-
munity preparedness in the Takkalasi watershed 
and beyond (Taherizadeh et al., 2023).

Table 3. Ranking of physical predictor variables based on random forest importance and SHAP values
Rank Physical variable Mean importance (RF) Standard deviation (RF) Mean SHAP value

1 NDVI (Vegetation) 0.3902 0.2886 0.2109

2 Slope 0.1988 0.2459 0.1088

3 HAND 0.1264 0.2006 0.0578

4 Elevation 0.1174 0.1817 0.0650

5 Land cover (LULC) 0.0551 0.1250 0.0295

6 Distance to road 0.0408 0.0522 0.0202

7 TWI 0.0207 0.0245 0.0144

8 Soil type 0.0191 0.0573 0.0108

9 Distance to river 0.0171 0.0054 0.0100

10 Rainfall (RF) 0.0142 0.0066 0.0089
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Figure 8. SHAP dependence analysis plots of 10 variables related to flooding: (a) elevation, (b) slope, (c) TWI, 
(d) HAND, (e) land cover, (f) distance from river, (g) NDVI, (h) soil type, (i) average rainfall,

(j) distance from road
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Figure 9. Machine learning-based flood hazard mapping results: (a) spatial probability distribution,
(b) flood vulnerability zoning

Table 4. Distribution of area and percentage of flood hazard levels
Hazard level Area (Ha) Percentage (%) Probability classification

Very low 7,434.33 79.79% Probability < 0.20

Low 279.12 3.00% 0.20 ≤ Probability < 0.40

Moderate 237.47 2.55% 0.40 ≤ Probability < 0.60

High 286.41 3.07% 0.60 ≤ Probability < 0.80

Very high 1,080.24 11.59% Probability ≥ 0.80

Total 9,317.57 100%

Figure 10. Confusion matrix of field validation results for flood inventory
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DISCUSSION

Reliability of radar-based environmental 
monitoring in data-scarce regions

This study demonstrates that a data-driven 
approach using the random forest algorithm inte-
grated with multi-source remote sensing data can 
provide precise solutions for flood hazard map-
ping in regions with very limited hydrological data 
(data-scarce regions). The model validation accu-
racy, which reached 94.45% with an AUC value of 
0.98, proves that this model is highly reliable and 
robust (Abdelkader and Csámer, 2025). Its primary 
advantage lies in its high generalization capability 
and superior recall value (96.80%). In the context 
of disaster risk management, this high sensitivity is 
crucial to ensure that virtually no flood-prone areas 

are missed during detection, thereby minimizing 
the risk of a false sense of security for the commu-
nity (Ahmad and Afzal, 2022). 

Compared with traditional hydrological meth-
ods, which are often constrained by the scarcity of 
rain and stream gauge stations in small-scale wa-
tersheds, this approach offers a more adaptable en-
vironmental monitoring system. The utilization of 
flood inventory data derived from Sentinel-1 SAR 
imagery has proven effective as a surrogate for dis-
charge data and is capable of objectively document-
ing inundation extent without human reporting bias 
(Misra et al., 2025). Furthermore, the resulting 
10-meter spatial resolution facilitates the identifica-
tion of micro-hotspots at the granularity of residen-
tial blocks or rice field plots, offering a significant 
improvement over typical regional risk maps.

Figure 11. Comparison curve of receiver operating characteristic (ROC) for training and validation

Figure 12. Comparison of the model training and validation performance
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Ecological engineering implications: 
Vegetation as primary defense

Explainable AI (SHAP) analysis revealed 
critical hydrological insights into the flood dy-
namics of the Takkalasi watershed. The identi-
fication of NDVI (0.39) as the primary determi-
nant highlights that the watershed’s main defense 
against flooding is its land retention capacity, 
which is ecologically controlled by the vegeta-
tion density (Durigon et al., 2014). The SHAP 
dependence graph indicates a critical “tipping 
point” at NDVI values between 0.1 and 0.3; be-
low this range, the soil’s ability to intercept and 
absorb water diminishes significantly, leading to 
a rapid transformation of rainfall into surface run-
off (Sharma et al., 2021). This confirms the char-
acteristic of a “flashy” response watershed, where 
upstream land cover degradation directly impacts 
the downstream peak discharge.

An intriguing finding was the relatively low 
ranking of rainfall’s influence in the spatial model 
compared to static physical parameters. This ob-
servation warrants a nuanced interpretation: al-
though rainfall is undeniably the meteorological 
trigger, it functions primarily as a temporal cata-
lyst rather than a spatial discriminator within the 
context of a small catchment. In watersheds small-
er than 100 km², the rainfall distribution during 
storm events tends to be spatially homogeneous. 
Therefore, while precipitation determines when 
the system is stressed, the physical land character-
istics, specifically the interplay between vegeta-
tion density (NDVI), topographic gradients, and 
soil saturation potential, strictly dictate the spe-
cific locations where hydraulic failure and inunda-
tion occur (Ganjirad and Delavar, 2023). Conse-
quently, flood mitigation strategies in the Takkala-
si watershed should not rely solely on downstream 
civil engineering solutions (e.g., levees). Instead, 
priority must be given to Ecological Engineering 
approaches, specifically bioengineering and the 
rehabilitation of critical upstream areas, to restore 
the natural retention capacity of the watershed.

Technogenic factors and engineering 
recommendations

The flood hazard map delineates a pro-
nounced dichotomy in risk levels between rela-
tively secure upstream regions and significantly 
vulnerable downstream areas. The identification 
of Tompo, Takkalasi, and Binuang Villages as 

areas of extreme risk (very high) offers a robust 
scientific foundation for local governments to 
amend their Regional Spatial Plans. These re-
gions, constituting 11.59% of the total watershed, 
are recommended to be designated as Strict Pro-
tection Zones or wetland agricultural areas (rice 
fields), with stringent restrictions on new residen-
tial development (Reis et al., 2017).

Additionally, the significant influence of the 
“distance to road” variable highlights a techno-
genic factor in flood risk assessment. Roads con-
structed across natural contours appear to function 
as artificial embankments that exacerbate local 
flooding. Therefore, urgent engineering interven-
tions are recommended, including (1) the techni-
cal evaluation of existing road infrastructure, (2) 
the improvement of cross-drainage systems (cul-
verts), and (3) the implementation of permeable 
road technologies to mitigate the damming effect 
and restore natural flow paths.

CONCLUSIONS

This study successfully achieved its primary 
objective: the development of a high-precision, 
automated flood hazard modeling framework that 
effectively overcomes the data scarcity limita-
tions inherent in small tropical watersheds. By 
integrating Sentinel-1 SAR imagery with an opti-
mized Random Forest algorithm, this study deliv-
ered a novel scientific contribution: establishing 
that machine learning models can substitute for 
physical hydrodynamic models with a valida-
tion accuracy of 94.45% and a recall of 96.80%, 
a level of precision previously unattainable with 
conventional methods in this region. This study 
fills a significant gap in hydrological science by 
quantifying the dominant role of land retention 
capacity (NDVI) over local rainfall variability 
in driving flood risks within “flashy” catchments 
(<100 km²). The identification of a critical veg-
etation threshold (NDVI 0.1–0.3) provides a new 
empirically derived parameter for ecological en-
gineering interventions. This opens promising 
prospects for the widespread adoption of nature-
based solutions in disaster mitigation, shifting the 
focus from reactive infrastructure to proactive 
landscape restoration. The established framework 
offers a replicable and cost-efficient protocol for 
environmental protection practitioners world-
wide, particularly in developing nations facing 
similar climatic and data challenges.
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