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ABSTRACT

Flood hazard management in small tropical river basins faces significant challenges owing to rapid hydrological
responses and a lack of hydrometric instrumentation. This study aimed to bridge the technological gap in environ-
mental monitoring by developing a high-precision flood hazard model capable of operating in data-scarce regions
where traditional hydrodynamic models fail because of insufficient parameterization. The methodology integrates
Sentinel-1 SAR imagery (2019-2025) and the random forest (RF) machine learning algorithm within the Python
platform. This study reconstructed historical flood dynamics and predicted spatial hazard zones using ten environ-
mental parameters. The results demonstrated robust model performance with a validation accuracy of 94.45%, an
area under curve (AUC) of 0.98, and a sensitivity of 96.80%, significantly outperforming conventional statistical
methods, which typically achieve lower accuracy in flashy watersheds. Spatially, the model identified 1,080.24
hectares (11.59% of the total area) as Very High hazard zones concentrated in the downstream alluvial plains. Fur-
thermore, explainable Al (SHAP) analysis revealed that vegetation density (NDVI) and topography are the primary
physical determinants of inundation, surpassing the influence of local rainfall variability. These findings provide a
scientifically validated framework for precise hazard zoning, confirming that machine learning integration can ef-
fectively substitute dense ground gauge networks to develop resilient environmental protection strategies.

Keywords: machine learning, random forest, explainable artificial intelligence, environmental engineering, Sen-
tinel-1 synthetic aperture radar, flood hazard modeling, tropical watershed.

INTRODUCTION

Global climate change has become a major
catalyst accelerating the hydrological cycle and
triggering an increase in the frequency and inten-
sity of hydrometeorological disasters worldwide.
Global warming has altered rainfall patterns,
making them more extreme and difficult to predict
(Totz etal., 2017). Intropical archipelagic regions
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such as Indonesia, this threat is compounded by
the complex interaction between steep topogra-
phy and regional climate variability. The increas-
ing recurrence of catastrophic floods in these re-
gions indicates a critical failure of the existing en-
vironmental protection infrastructure, suggesting
that current mitigation strategies, which are often
reactive and reliant on static historical data, are
insufficient. This necessitates an urgent paradigm
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shift in environmental engineering towards pre-
cise, technology-driven spatial modeling that can
account for dynamic climatic shifts.

The Takkalasi watershed in South Sulawesi
province exemplifies this eco-hydrological vul-
nerability. As a small-scale catchment (<100
km?), it exhibits a characteristic “flashy” hydro-
logical response, where the combination of steep
upstream terrain and a short flow path results in
the rapid conversion of rainfall into surface run-
off (Ibarreche et al., 2020). Consequently, the wa-
tershed frequently experiences hydraulic failure,
where peak discharges exceed the channel capac-
ity within hours of a storm event. This rapid onset
leaves a dangerously narrow window for warning
and evacuation, exposing downstream agricultur-
al lands and settlements to severe environmental
degradation and economic losses. The recurrence
of these events highlights the urgent need for sus-
tainable environmental monitoring systems that
can operate in real time.

Despite the urgency, flood mitigation plan-
ning in the Takkalasi watershed faces fundamen-
tal methodological limitations. Previous studies
and engineering practices in this region have
largely relied on conventional hydrologic-sta-
tistical methods, such as the rational method or
synthetic unit hydrograph (Brunner et al., 2018).
While effective for point-based estimation in hy-
draulic structure design, these deterministic ap-
proaches exhibit significant weaknesses for mod-
ern disaster management: (1) they are inadequate
for mapping the spatial distribution of inundation
required for zoning; (2) they depend heavily on
rainfall and stream gauge data, which are often
sparse or damaged in developing countries (data-
scarce regions); and (3) they assume “stationar-
ity,” a concept no longer valid in the climate crisis
era (Khan et al., 2011).

The absence of accurate risk models owing
to data scarcity hinders local governments from
formulating adaptive policies. To address this
technological gap, computer modeling and IT ap-
plications based on machine learning (ML) have
emerged as promising paradigms in environmen-
tal engineering. Unlike rigid physical models that
require extensive parameterization (e.g., river
geometry for HEC-RAS), ML algorithms such
as random forest (RF) are specifically selected in
this study because of their ensemble nature, which
effectively handles high-dimensional, non-linear
environmental data without succumbing to over-
fitting, a common pitfall in single-decision tree

models (Youssef et al., 2022). Crucially, this ap-
proach offers the flexibility to integrate Big Data
from remote sensing. Sentinel-1 synthetic aper-
ture radar (SAR) imagery, for instance, provides a
decisive advantage by detecting flood inundation
through cloud cover, which is a persistent limi-
tation of optical imagery in the tropics, thereby
generating objective flood inventory data without
reliance on subjective manual reporting.
Moreover, the use of machine learning in en-
vironmental engineering goes beyond achieving
predictive accuracy; it requires interpretability to
inform physical actions (Giudici et al., 2023). The
‘black-box’ nature of sophisticated algorithms of-
ten impedes their use in policymaking. To address
this issue, this study utilized explainable artificial
intelligence (XAI) with SHapley Additive exPla-
nations (SHAP) to break down the decision-mak-
ing process of the Random Forest model. This
method enables a detailed assessment of how spe-
cific physical factors, such as vegetation density
compared to rainfall, affect hydraulic failure. This
diagnostic ability is crucial for developing precise
bioengineering solutions, shifting from broad
hazard zoning to focused landscape restoration.
However, a review of the global literature re-
veals significant research gaps. Most ML applica-
tion studies for floods have focused on large-scale
watersheds or subtropical regions with abundant
data availability (Wang et al., 2024). There is a
paucity of research examining the reliability of
these advanced methods for small-scale tropical
watersheds (<100 km?), which are characterized
by rapid hydrological responses but suffer from
severe data scarcity. Consequently, these vulnera-
ble areas often bear the brunt of flash floods. This
study aims to fill this critical knowledge gap by
establishing a novel high-precision flood vulner-
ability mapping framework specifically tailored
for data-scarce small-scale tropical watersheds.
The central hypothesis of this study is that by in-
tegrating high-resolution SAR imagery with an
optimized random forest algorithm, it is possible
to achieve a prediction accuracy exceeding 90%,
which significantly surpasses traditional models,
solely using open-source remote sensing data.
Specifically, this study seeks to demonstrate that
(1) the proposed ML-based model can accurately
identify micro-scale hazard zones that are invis-
ible to coarse regional models, and (2) in small
“flashy” catchments, physical land characteristics
(such as vegetation density) exert a more domi-
nant control over flood vulnerability than local
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rainfall variability, a finding that would funda-
mentally shift engineering mitigation strategies
from structural to ecological approaches.

MATERIALS AND METHODS

Study area

This study focused on the Takkalasi water-
shed, a critical ecological unit situated in Barru
regency, South Sulawesi, Indonesia, geographi-
cally centered at 119° 41° 50.082” E. Spanning
an area of approximately 9.317 ha, the water-
shed operates under a tropical monsoon climate
regime, exhibiting a pronounced seasonality
with a high-intensity wet season typically occur-
ring between November and April. Geomorpho-
logically, the area is characterized by a dramatic
topographic gradient (Figure 1), transitioning
rapidly from rugged, mountainous upstream re-
gions, which serve as the primary source areas,
to the low-lying downstream alluvial plains,
where the Takkalasi River eventually discharges
into the Makassar Strait. This steep morphologi-
cal configuration results in a short concentration
time, generating a high potential energy for sur-
face runoff during storm events. Furthermore,
the land cover gradient, moving from upstream

vegetation to downstream intensive agricultural
zones and settlements, creates a complex inter-
action between natural flow paths and anthropo-
genic activities. When coupled with the intense
precipitation characteristic of the monsoon, these
hydromorphological features render the down-
stream communities particularly susceptible to
flash floods and riverine inundation, underscoring
the necessity for urgent and precise environmen-
tal protection measures.

Data acquisition and framework

This study was structured using a compre-
hensive and systematic methodological workflow
designed to ensure reproducibility and robust-
ness in environmental modeling. The framework
(Figure 2) operates on a modular “Input-Process-
Output” architecture, primarily executed within
the google earth engine (GEE) cloud computing
environment to efficiently handle large-scale geo-
spatial datasets. The workflow is divided into four
main sequential stages: (1) multi-source data ac-
quisition and advanced image pre-processing; (2)
construction of physical predictor variables and
derivation of a historical flood inventory; (3) de-
velopment and training of the spatial model using
the Random Forest algorithm; and (4) rigorous
model performance evaluation and quantitative
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Figure 1. Study area map of the Takkalasi watershed in Barru regency, South Sulawesi
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Figure 2. Research methodology flow — integration of remote sensing data and machine learning
for flood hazard mapping

analysis of flood determinants using explainable
Al. Flood inventory mapping was conducted in
GEE using Sentinel-1 SAR imagery and adaptive
Change Detection, while the random forest ma-
chine learning model was implemented and pro-
cessed in Python using the Scikit-learn library to
ensure flexibility, reproducibility, and integration
with advanced statistical validation libraries.

A comprehensive array of validated global
datasets was incorporated to underpin this data-
driven framework. The target variable (), indic-
ative of historical flood occurrences, was derived
from high-resolution (10-meter) Sentinel-1 SAR
imagery spanning the period 2019-2025, employ-
ing an adaptive Change Detection method. The
predictor variables (X) were organized into four
principal environmental clusters to encapsulate
the multifaceted nature of flood risk: Topographic
data — high-precision variables, including eleva-
tion, slope, topographic wetness index (TWI),

and height above nearest drainage (HAND), were
derived from the 8-meter resolution National Dig-
ital Elevation Model (DEMNAS). Land physical
characteristics: land cover and vegetation density
(NDVI) were extracted from 10-meter resolution
Sentinel-2 MSI optical imagery. Climatic Vari-
ables — daily rainfall data were obtained from the
Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS) dataset, which pro-
vides a spatial resolution of 0.05° (~5.5 km). An-
thropogenic and soil factors — distance to rivers
and road networks were derived from the 1:25,000
scale Indonesian Topographic Map (RBI), and
soil properties were obtained from a 1:250,000
scale RePPProT map. To ensure spatial consis-
tency and compatibility for the machine learning
analysis, all raster datasets were resampled and
aligned to a uniform 10-meter pixel resolution
using the nearest-neighbor method. This rigor-
ous data standardization process ensured that the
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model input represented a coherent spatial ma-
trix, facilitating precise pixel-based classification.

Flood inventory using SAR imagery

Precise flood susceptibility mapping (FSM)
relies heavily on the quality of the training data.
To overcome the limitations of optical imagery in
cloud-prone tropical regions, this study utilized
the GEE platform to process Sentinel-1 ground
range detected (GRD) imagery. The inventory was
constructed by analyzing seven significant flood
events that occurred between 2019 and 2025 (Ta-
ble 1). The image processing workflow included:
(1) thermal noise removal and radiometric cali-
bration; (2) speckle filtering using the Refined Lee
filter to reduce noise while preserving water body
edges; and (3) terrain correction to rectify geomet-
ric distortions. Flood detection was performed us-
ing a Change Detection approach by comparing
the “Target Period” (flood event) and “Baseline
Period” (dry conditions). A random forest classifi-
er trained with samples from the JRC Global Sur-
face Water dataset was applied to distinguish flood
inundation from permanent water bodies. The fi-
nal dataset consisted of 20,000 stratified sample
points (10.000 flood and 10.000 non-flood) split
into 70% for training and 30% for testing.

Flood conditioning factors

Flooding occurs as a result of complex inter-
actions between landforms, water flow, surface
characteristics, weather, and anthropogenic ac-
tivities (Lyu et al., 2018). To comprehensively
model flood risk in the Takkalasi watershed, this
study selected ten variables representing topo-
graphic, hydrological, and ecological engineer-
ing factors processed using GEE at a 10-meter
resolution. Topographic factors include elevation
(Figure 3a), which indicates vulnerability to water

accumulation in lowland areas owing to gravity,
and slope (Figure 3b), which controls the speed of
water flow, where flat terrain slows runoff and trig-
gers ponding (Hou and Gao, 2019). The analysis
also included the topographic wetness index (Fig-
ure 3c) to identify soil saturation zones, as well
as the height above nearest drainage (Figure 3d),
which measures the vertical proximity of areas to
drainage channels. From a hydrological perspec-
tive, the distance to river (Figure 3e) was used as
the main indicator of fluvial overflow risk. Physi-
cal land characteristics are represented by the nor-
malized difference vegetation index (Figure 3f),
indicating the surface roughness of vegetation;
land cover (Figure 3g), distinguishing between
permeable and impermeable areas; and soil type
(Figure 3h), which determines the natural infiltra-
tion capacity (Dahigamuwa et al., 2016).

In addition to the physical factors of the land,
meteorological and anthropogenic elements are
also considered triggers and differentiators of
risk. Climatic factors are represented by the aver-
age rainfall (Figure 3i) from the CHIRPS dataset,
which highlights the importance of precipitation
variability as a primary input in the hydrological
system (Ceron et al., 2020). Finally, the influence
of human activity was examined using the variable
distance to road (Figure 3j). Road infrastructure is
often correlated with built-up areas that have low
infiltration, and the structure of road embankments
can alter natural flow patterns, acting as barriers
that exacerbate local floods (Douglas et al., 2008).
All of these spatial variables were normalized and
integrated into the machine learning model to pre-
cisely detect flood vulnerability patterns.

Random forest hazard modeling

Spatial prediction was performed using the
RF algorithm, an ensemble learning method that
is robust against overfitting in high-dimensional

Table 1. Sentinel-1 data acquisition period for the flood inventory

Year Target period (flood events) Baseline period (dry conditions)
2019 20 January-31 January 01 August-31 August
2020 18 December—28 December 20 November—30 November
2021 01 December—20 December 01 August-25 August
2022 01 December—-30 December 01 August-30 August
2023 01 January—28 February 01 August-30 August
2024 01 January-30 January 01 August-30 August
2025 01 November—25 December 01 July-31 July
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Figure 3. Spatial distribution of the ten flood conditioning factors used in the random forest model: (a) elevation,
(b) slope, (c) topographic wetness index (TWI1), (d) height above nearest drainage (HAND), (e) distance to river,
(f) normalized difference vegetation index (NDVI), (g) soil type, (h) average rainfall, and (i) distance to road

data (Wu et al., 2024). Unlike standard imple-
mentations, this study explicitly optimized the
algorithm for spatial hazard modeling by imple-
menting a balanced sampling strategy using strat-
ified sampling with a 1:1 ratio between flood and
non-flood pixels in the training dataset. The mod-
el configuration included fine-tuning hyperpa-
rameters: the number of trees (n_estimators) was
set to 500 to ensure stability, and the maximum
tree depth (max_depth) was limited to 25 to pre-
vent overfitting while capturing complex, nonlin-
ear interactions. The Gini Impurity criterion was
used for node splitting. The prediction function
for a new class (x') is formulated as Equation 1:

y = mode{T}, (x)}5=1 (1)

where: a T, (x) is the class output of the b-th tree,
and (B) is the total number of trees.

The configuration and training of the model
in the Python script (Scikit-learn) are carried
out by implementing a balanced sampling strat-
egy using stratified sampling with a 1:1 ratio to
address data imbalance between flood and non-
flood pixels. Meanwhile, the optimized hyperpa-
rameters set the number of trees (n_estimators)
to 500, with the tree depth (max_depth) limited
to 25 to prevent overfitting, and the Gini Impu-
rity criterion was used for splitting. To enhance
the transparency and credibility of the methodol-
ogy, the actual computational implementation is
shown in Figure 4. This figure displays the Python
code snippet utilized for configuring the random

forest classifier and SHAP analysis, confirm-
ing the application of specific hyperparameters
(class_weight="balanced’,  n_estimators=500)
rather than default settings.

Model evaluation and validation

Model validation was conducted using 70%
of the training set and 30% of the test set. The
evaluation employed A confusion matrix was
used to compute the performance metrics.

Confusion matrix

The performance of the classification model
was fundamentally assessed using a confusion
matrix, which compared the predicted class-
es with the actual ground truth (Pomme et al.,
2022). It consists of four key components: true
positive (TP), which represents flood pixels cor-
rectly identified by the model; true negative (TN),
which denotes non-flood pixels correctly classi-
fied as safe; false positive (FP), which indicates
non-flood pixels incorrectly predicted as flood
(Type | error); and false negative (FN), which re-
fers to actual flood pixels that the model failed to
detect (Type Il error).

Accuracy

The percentage of accurate predictions across
all regions serves as an indicator of the model’s
efficacy in distinguishing areas of high and low
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# 2. Initialize Explainer (TreeExplainer for Random Forest)

explainer = shap.Explainer(clf, x_sample_df)

# 3. Compute SHAP values
shap_values = explainer(x_sample_df)

B0 9

# 4. Feature Importance Extraction from SHAP

mean_abs_shap = np.mean(np.abs(shap_values.values), axis=e)

top_indices = np.argsort(mean_abs_shap)[::-1]

# 5. Generate Dependence Plot for Top Features

shap.dependence_plot(top_indices(@], shap_values.values, x_sample_df, interaction_index=None)

print(“Sedang menghitung SHAP Values (Analisis Fisik)...")

Figure 4. Python implementation screenshot: (a) configuration of the optimized random forest model
and (b) SHAP analysis

vulnerability (Williams et al., 2024), as defined
in Equation 2:
p _ TP +TN
CCUracY = TP Y TN + FP + FN

)

Precision

The accuracy of positive predictions is cru-
cial for minimizing false alarms when forecasting
floods, as defined in Equation 3:

TP

Precision = TP T FP (3)

Recall

Recall is defined as the ratio of correctly
identified flood-prone areas to the total number
of actual flood-prone areas, serving as an indica-
tor of the effectiveness of a method in identifying

204

all genuine flood-prone areas. It is computed by
dividing the number of flood-prone areas accu-
rately identified by the method by the total num-
ber of actual flood-prone areas (Taherizadeh et
al., 2023), as shown in Equation 4:

Recall = — )
= TP ¥ FN

F1-Score

The F1-score assesses a model’s balance by
incorporating both precision and recall, thereby fa-
cilitating the accurate identification of flood-prone
areas by reducing false positives and negatives
(Tsumita et al., 2025), as expressed in Equation 5:

F1-S 9 % Precision X Recall (5)
-Score =
Precision + Recall
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AUC-ROC

The receiver operating characteristic (ROC)
technique was employed to evaluate the model’s
performance by calculating the area under the
curve (AUC). The ROC technique is among the
most prevalent methods for assessing the accu-
racy of predictive models (Centor and Schwartz,
1985). The ROC curve compares the true posi-
tive rate (sensitivity) with the false-positive rate
(1-specificity) at different thresholds. This pro-
vides a complete picture of the model accuracy,
as shown in Equations 6 and 7:

FP

FPR = 1 — specificity = FP-I-—T]V (6)

ROC — AUC = f lTPR(FPR)d(FPR) (7
0

Ground check sampling

To physically validate the map results in the
field, the minimum sample size ($n$) was deter-
mined using the Cochran Formula to ensure statis-
tical representativeness at a 90% confidence level
(Zhao et al., 2014). is defined as in Equation 8:

Z*-p-q

n—e—2 8

Flood predictors significance

Variable importance

The significance of the flood predictors was
evaluated by examining the feature importance
characteristics of the Random Forest model. This
analysis employed the feature_importances_ at-
tribute available in the Scikit-learn Python library,
which offers insights into the relative contribution
of each predictor variable to the predictive perfor-
mance of the models (Ghanim et al., 2023). This
methodology is essential in flood studies because
it allows researchers to identify the most influen-
tial factors contributing to flood susceptibility and
quantify their impact on flooding.

SHapley additive exPlanations (SHAP)

SHAP, developed by Lundberg and Lee, iden-
tifies the most significant input features and their
interactions. In contrast to earlier methodolo-
gies, SHAP uniquely guarantees ‘local accuracy,’
thereby addressing issues inherent in other feature

importance measures (Wang et al., 2024). It pro-
vides a more nuanced understanding than broader
perspectives. This study used the Shapley value to
assess feature significance in flood risk and ranked
features by their contributions. Each point on the
graph represents a sample’s Shapley value (¢,)
with red points indicating higher values and blue
points denoting lower values. A broader distribu-
tion of points indicates a significant influence on
flood risk. The features are arranged vertically by
importance, with the most critical features at the
top. The average Shapley value indicates the im-
pact of each feature on flood risk. The bar graph
shows the feature importance, with taller bars in-
dicating substantial positive effects and shorter
bars indicating a lesser impact. The Shapley value
is computed as defined in Equation 9.

ISIL(IF] - 11— 1)t
di= o ©)

SCF\{i}

where: ¢, represents the Shapley value for fea-
ture $i$, indicating its contribution to the
model’s output. F is the complete set of
input features, while S denotes a subset of
features excluding i.

The term f(S) is the prediction of the model
with the feature subset S, and f(S U {i}) is the

prediction when feature i is included. The weight-
. [SILAF] = 1S = 1)! .
ing factor — 7 accounts for all possi-

ble permutations of feature introduction, ensuring
a fair allocation of the prediction value among the
constituent features.

RESULTS

Historical flood event inventory

The extraction results from Sentinel-1 SAR
imagery over a seven-year period (2019-2025)
using the Adaptive Time-Window Change De-
tection method successfully mapped the spatial
dynamics of significant flood events in the Takka-
lasi watershed. Data analysis (Figure 5, Table 2)
showed that fluctuations in the extent of inunda-
tion were strongly correlated with regional cli-
mate anomalies. The peak of extreme flood events
was recorded in 2022, with an inundation area of
539.38 ha, contributing 21.52% to the total his-
torical flood footprint. This massive event coin-
cided with a moderate La Nifia phenomenon that
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triggered an annual rainfall increase of 3.546 mm.
Conversely, the lowest inundation extent was re-
corded in 2023 at 64.45 ha (2.57%), reflecting
dry conditions due to the El Nifio phase. These
findings confirm that radar-based methods can
capture the sensitivity of watershed hydrological
responses to climate variability.

Physical predictor variables construction

The training dataset was formed by integrat-
ing the historical flood event map/Y variable (Fig-
ure 6a) with the stack of predictor variables X
(Figure 6b), resulting in 20,000 stratified sample
points (50% flood, 50% safe) from a total popu-
lation of 931,793 pixels. The Balanced Stratified
Random Sampling strategy was used to address
class imbalance, ensuring that the Machine Learn-
ing model could recognize both flood and safe area
patterns evenly. Each sample point was extracted
from locations that were consistently flooded or
not throughout 2019-2025 and assigned values
from the 10 main physical variables.

The distribution analysis shown in Figures 7a—
7j provides critical insights into the flood mecha-
nisms specific to small tropical watersheds (<100
km?). Unlike larger basins, where regional hydrol-
ogy dominates, flood events in the Takkalasi wa-
tershed are strictly confined by micro-topographi-
cal and land cover constraints. Most flood points
were concentrated at low elevations (<25 masl,

Figure 7a) and flat slopes (<8%, Figure 7b); howev-
er, they heavily overlapped with sparse vegetation
areas (NDVI 0.1-0.3, Figure 7f). This distinct pat-
tern confirms the “flashy” nature of the watershed,
where the absence of upstream vegetative buffers
leads to a rapid downstream accumulation. The
consistency between the distribution of the train-
ing samples and the total population strengthened
the validity of the proposed Random Forest model,
ensuring that the algorithm learned from physically
meaningful patterns rather than statistical noise.

Determination of flood causing factors
using random forest results

Variable importance

The analysis of variable importance provides
quantitative insights into the physical parameters
that are the main drivers of disasters. Based on the
computational results presented in Table 3, a clear
hierarchy of influence among the ten predictor vari-
ables has emerged. The NDVI (Vegetation Index)
ranked highest, with a Mean Importance score
of 0.3902, followed by slope (0.1988), HAND
(0.1264), and elevation (0.1174). These four vari-
ables form the “Primary Determinant Cluster”, con-
tributing more than 83% of the model’s predictive
power. The dominance of NDVI underscores that
flooding in the Takkalasi watershed is ecologically
controlled by vegetation cover, which determines
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Figure 5. Maps of annual flood distribution (a-g) and composite inventory results (h) for the period 2019-2025
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Table 2. Relationship between flood inundation areas and average annual rainfall (2019-2025)

Year Flood area (ha) Average rainfall (mm/year)
2019 175.22 1869.59
2020 385.10 2814.35
2021 483.11 3134.54
2022 539.38 3546.24
2023 64.45 1779.64
2024 412.45 2758.43
2025 447.03 2814.89

(a)
TRAINING DATA
(VARIABLE YY)

© No Flood

® Flood

(b)
TRAINING DATA N
(VARIABLE X)

@ Training Data s

Figure 6. Spatial distribution of training data: (a) distribution of binary sample points (flood/safe);
(b) extraction of multiparameter values (variable X) at sample points

infiltration capacity. In contrast, rainfall ranked
lowest (0.0142), indicating that in small watersheds
with homogeneous meteorological conditions,
flood locations are more determined by the land’s
inability to absorb water (static factors) than by the
variability of rainfall itself (Zhou et al., 2021).

SHAP dependence analysis

The analysis of the SHAP dependence
plot (Figure 8) elucidates the nonlinear physi-
cal mechanisms and identifies critical tipping
points in flood control. The NDVI dependence
graph indicates a significant increase in extreme
risk within the range of 0.1-0.3, correspond-
ing to open land or sparse vegetation, which
is associated with the highest positive SHAP
value. Conversely, the risk markedly decreased
to negative at high vegetation densities (>0.7),
corroborating the role of vegetation in mitigat-
ing surface runoff. A comparable pattern was

observed in the slope gradient, where the risk
was concentrated at slopes of less than 8%
(flat terrain), which were identified as points
of flow stagnation. Furthermore, the anthropo-
genic variable, distance to road, demonstrated
an increase in risk within a radius of 100-500
m, suggesting an impoundment effect due to
road infrastructure disrupting natural drainage
patterns. In contrast, the dependency plot for
rainfall showed very small SHAP value fluctua-
tions around zero, confirming its limited role as
a spatial differentiator at the local level.

Spatial flood hazard analysis

The concluding phase of hazard modeling
entails transforming flood probability data (Fig-
ure 9) into practical zoning maps. Utilizing the
probability figures produced by the random forest
algorithm for each 10-meter pixel, reclassification
was performed using the Natural Breaks (Jenks)
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method. This process organizes the data into five Spatial statistical analysis (Table 4) showed
standard interval categories, illustrating the risk unique risk distribution characteristics in the Tak-
gradient from “very low” to “very high.” Figure kalasi watershed. Most of the area (79.79% or
8b shows the resulting flood vulnerability map. 7.434 ha) is classified as a safe zone (very low),
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Table 3. Ranking of physical predictor variables based on random forest importance and SHAP values

Rank Physical variable Mean importance (RF) Standard deviation (RF) Mean SHAP value
1 NDVI (Vegetation) 0.3902 0.2886 0.2109
2 Slope 0.1988 0.2459 0.1088
3 HAND 0.1264 0.2006 0.0578
4 Elevation 0.1174 0.1817 0.0650
5 Land cover (LULC) 0.0551 0.1250 0.0295
6 Distance to road 0.0408 0.0522 0.0202
7 TWI 0.0207 0.0245 0.0144
8 Soil type 0.0191 0.0573 0.0108
9 Distance to river 0.0171 0.0054 0.0100
10 Rainfall (RF) 0.0142 0.0066 0.0089

generally located in the upstream region with
steep topography that functions as a runoff zone.
However, zones with very high vulnerability con-
stitute a significant proportion, reaching 11.59%
(1,080.24 ha). This extreme polarization between
the safe and high-hazard zones is a typical indi-
cator of a watershed with a rapid hydrological
response, where water from the upstream area is
directly accumulated in the downstream flat area
without a wide transitional zone.

Model performance evaluation

Ground truth

Field validation was conducted at 188 sample
locations using Cochran’s formula with 90% confi-
dence to confirm the accuracy of the flood inventory
map from Sentinel-1 imagery. This process ensures
that the training data accurately reflect real-world
conditions. According to the confusion matrix from
the field validation (Figure 10), this radar-based
inventory method achieved an overall accuracy of
91.5%. Of the 89 points identified as flood areas,
81 were verified as actual flood sites (true positive)
through water marks and resident interviews. Only
eight points were detection errors (false positives).
Analysis showed that these false positives occurred
mainly in irrigated rice fields during inundation,
exhibiting radar reflections similar to river over-
flow floods (Phan et al., 2019). This low error rate
(<10%) confirms that the Sentinel-1 inventory data
are valid for training the random forest model.

Random forest model evaluation

Following physical validation, the random
forest model underwent a statistical assessment
using a 70:30 data split on a separate test dataset

to evaluate its ability to generalize. As explicitly
demonstrated in the receiver operating charac-
teristic (ROC) analysis (Figure 11), the model
achieved an exceptional area under curve (AUC)
score of 0.9849. This statistical metric confirms
the model’s superior capability to distinguish be-
tween flood and non-flood classes with high pre-
cision, far surpassing the standard benchmarks.
The predictive performance was further substan-
tiated by an overall accuracy of 94.45% and a pre-
cision score of 92.45%, indicating a very low rate
of false-positive alarms.

Crucially, the model achieved a recall value
of 96.80%. In the context of disaster manage-
ment, this metric is of paramount importance, as
it signifies that the model successfully detected
nearly 97% of all actual flood events, minimiz-
ing the risk of “missed targets” (false negatives)
that could have catastrophic consequences for
community safety. The high recall of the Ran-
dom Forest model demonstrates its robustness in
capturing spatial patterns and environmental sig-
nals that distinguish flood-prone areas from safe
zones. This was reinforced by the AUC-ROC
score of 0.9849 (Figure 12), which indicates ex-
cellent separability between the flood and non-
flood classes. Such a high AUC value confirms
the model’s accuracy across probability thresh-
olds, making it adaptable to various scenarios.
The combination of high accuracy, precision, re-
call, and near-perfect AUC establishes the Ran-
dom Forest model as a powerful tool for early
warning systems. This provides decision-makers
with confidence that the model can be deployed
in flood management strategies, supporting pro-
active mitigation, resource allocation, and com-
munity preparedness in the Takkalasi watershed
and beyond (Taherizadeh et al., 2023).
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Figure 9. Machine learning-based flood hazard mapping results: (a) spatial probability distribution,
(b) flood vulnerability zoning

Table 4. Distribution of area and percentage of flood hazard levels

Hazard level Area (Ha) Percentage (%) Probability classification
Very low 7,434.33 79.79% Probability < 0.20
Low 279.12 3.00% 0.20 < Probability < 0.40
Moderate 237.47 2.55% 0.40 < Probability < 0.60
High 286.41 3.07% 0.60 < Probability < 0.80
Very high 1,080.24 11.59% Probability = 0.80
Total 9,317.57 100%

Flood

Sentinel-1 Prediction

No Flood

Figure 10.
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Confusion matrix of field validation results for flood inventory
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DISCUSSION

Reliability of radar-based environmental
monitoring in data-scarce regions

This study demonstrates that a data-driven
approach using the random forest algorithm inte-
grated with multi-source remote sensing data can
provide precise solutions for flood hazard map-
ping in regions with very limited hydrological data
(data-scarce regions). The model validation accu-
racy, which reached 94.45% with an AUC value of
0.98, proves that this model is highly reliable and
robust (Abdelkader and Csamer, 2025). Its primary
advantage lies in its high generalization capability
and superior recall value (96.80%). In the context
of disaster risk management, this high sensitivity is
crucial to ensure that virtually no flood-prone areas
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are missed during detection, thereby minimizing
the risk of a false sense of security for the commu-
nity (Ahmad and Afzal, 2022).

Compared with traditional hydrological meth-
ods, which are often constrained by the scarcity of
rain and stream gauge stations in small-scale wa-
tersheds, this approach offers a more adaptable en-
vironmental monitoring system. The utilization of
flood inventory data derived from Sentinel-1 SAR
imagery has proven effective as a surrogate for dis-
charge data and is capable of objectively document-
ing inundation extent without human reporting bias
(Misra et al., 2025). Furthermore, the resulting
10-meter spatial resolution facilitates the identifica-
tion of micro-hotspots at the granularity of residen-
tial blocks or rice field plots, offering a significant
improvement over typical regional risk maps.
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Ecological engineering implications:
Vegetation as primary defense

Explainable Al (SHAP) analysis revealed
critical hydrological insights into the flood dy-
namics of the Takkalasi watershed. The identi-
fication of NDVI (0.39) as the primary determi-
nant highlights that the watershed’s main defense
against flooding is its land retention capacity,
which is ecologically controlled by the vegeta-
tion density (Durigon et al., 2014). The SHAP
dependence graph indicates a critical “tipping
point” at NDVI values between 0.1 and 0.3; be-
low this range, the soil’s ability to intercept and
absorb water diminishes significantly, leading to
a rapid transformation of rainfall into surface run-
off (Sharma et al., 2021). This confirms the char-
acteristic of a “flashy” response watershed, where
upstream land cover degradation directly impacts
the downstream peak discharge.

An intriguing finding was the relatively low
ranking of rainfall’s influence in the spatial model
compared to static physical parameters. This ob-
servation warrants a nuanced interpretation: al-
though rainfall is undeniably the meteorological
trigger, it functions primarily as a temporal cata-
lyst rather than a spatial discriminator within the
context of a small catchment. In watersheds small-
er than 100 kmz?, the rainfall distribution during
storm events tends to be spatially homogeneous.
Therefore, while precipitation determines when
the system is stressed, the physical land character-
istics, specifically the interplay between vegeta-
tion density (NDVI), topographic gradients, and
soil saturation potential, strictly dictate the spe-
cific locations where hydraulic failure and inunda-
tion occur (Ganjirad and Delavar, 2023). Conse-
quently, flood mitigation strategies in the Takkala-
si watershed should not rely solely on downstream
civil engineering solutions (e.g., levees). Instead,
priority must be given to Ecological Engineering
approaches, specifically bioengineering and the
rehabilitation of critical upstream areas, to restore
the natural retention capacity of the watershed.

Technogenic factors and engineering
recommendations

The flood hazard map delineates a pro-
nounced dichotomy in risk levels between rela-
tively secure upstream regions and significantly
vulnerable downstream areas. The identification
of Tompo, Takkalasi, and Binuang Villages as

areas of extreme risk (very high) offers a robust
scientific foundation for local governments to
amend their Regional Spatial Plans. These re-
gions, constituting 11.59% of the total watershed,
are recommended to be designated as Strict Pro-
tection Zones or wetland agricultural areas (rice
fields), with stringent restrictions on new residen-
tial development (Reis et al., 2017).

Additionally, the significant influence of the
“distance to road” variable highlights a techno-
genic factor in flood risk assessment. Roads con-
structed across natural contours appear to function
as artificial embankments that exacerbate local
flooding. Therefore, urgent engineering interven-
tions are recommended, including (1) the techni-
cal evaluation of existing road infrastructure, (2)
the improvement of cross-drainage systems (cul-
verts), and (3) the implementation of permeable
road technologies to mitigate the damming effect
and restore natural flow paths.

CONCLUSIONS

This study successfully achieved its primary
objective: the development of a high-precision,
automated flood hazard modeling framework that
effectively overcomes the data scarcity limita-
tions inherent in small tropical watersheds. By
integrating Sentinel-1 SAR imagery with an opti-
mized Random Forest algorithm, this study deliv-
ered a novel scientific contribution: establishing
that machine learning models can substitute for
physical hydrodynamic models with a valida-
tion accuracy of 94.45% and a recall of 96.80%,
a level of precision previously unattainable with
conventional methods in this region. This study
fills a significant gap in hydrological science by
quantifying the dominant role of land retention
capacity (NDVI) over local rainfall variability
in driving flood risks within “flashy” catchments
(<100 km?). The identification of a critical veg-
etation threshold (NDVI 0.1-0.3) provides a hnew
empirically derived parameter for ecological en-
gineering interventions. This opens promising
prospects for the widespread adoption of nature-
based solutions in disaster mitigation, shifting the
focus from reactive infrastructure to proactive
landscape restoration. The established framework
offers a replicable and cost-efficient protocol for
environmental protection practitioners world-
wide, particularly in developing nations facing
similar climatic and data challenges.
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