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INTRODUCTION

Human life and biodiversity sustainability 
are highly dependent on the aquatic environment, 

which is one of the most critical ecosystems (Ka-
mal, 2024). Water quality studies are widely con-
ducted, given the increasing incidence of water 
pollution, which poses a threat to the ecosystem, 
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human health, economy, development, and so-
cial welfare (Puari et al., 2025). Around 50% of 
global child fatalities and 80% of illnesses are 
caused by poor water quality (Dr. Amit Krishan 
et al., 2023). Heavy metals are a category of en-
vironmental contaminants from contaminated 
water sources (Abubakar et al., 2024). Increased 
concentrations of heavy metals in water that are 
above permissible limits result in environmental 
issues and pose risks to public health due to their 
toxic, persistent, bioaccumulative, and biocon-
centrative characteristics (Mekuria et al., 2021).

Heavy metals are elements characterized by 
atomic weights ranging from 63.5 to 200.6 and 
densities above 5 g/cm³ (Chahal et al., 2023). 
Currently, more than 50 heavy metals may pose a 
threat to human health. Heavy metals recognised 
as dangerous to humans include lead (Pb), mer-
cury (Hg), copper (Cu), chromium (Cr), arsenic 
(As), and cadmium (Cd) (Tandel et al., 2024). 
Heavy metal pollutants are inherently found in 
the atmosphere, aquatic environments, and the 
Earth’s crust, and they can accumulate in biologi-
cal systems, including plants and animals (Ethaib 
et al., 2022). Additionally, human activities like 
farming, manufacturing, urbanisation, and min-
ing create large amounts of heavy metals (Bar-
gah, 2024). These metals are subsequently dis-
charged into aquatic ecosystems and biomagni-
fied through the food web (Kumar et al., 2020). 
Humans may encounter heavy metal ions via 
contaminated drinking water, resulting in consid-
erable health issues (Roy et al., 2024).

Various technologies have been developed 
to minimise the presence of heavy metal ions in 
water environments (Li et al., 2023). Although 
they have been used for a long time, conventional 
methods such as chemical precipitation, adsorp-
tion, ion exchange, reserve osmosis, and precipi-
tation are often limited by high operating costs, 
poor performance at low metal concentrations, 
and a tendency to generate secondary waste, 
which requires more care and disposal (Nurmus-
taqimah et al., 2025). Conventional method limi-
tations highlight the need for more economical 
and ecological approaches to heavy metal treat-
ment (Pathak et al., 2024). The development of 
economical and environmentally sustainable re-
mediation technology is crucial for addressing 
heavy metal contamination, while also enhancing 
water and soil quality to ensure sustained envi-
ronmental protection and public health (Md Isa, 
2022). Environmentally friendly remediation 

techniques such as phytoremediation, biosorption 
using plant biomass or organic waste, and micro-
organism-based bioremediation that are efficient 
and cost-effective in adsorbing heavy metals (Ay-
ach et al., 2024). Additionally, methods based on 
nanotechnology can remove heavy metals from 
contaminated settings in a highly focused and ef-
ficient manner (Sah et al., 2024). These alterna-
tive remediation techniques possess the capacity 
to mitigate heavy metal contamination in a cost-
effective and sustainable way.

Despite the proliferation of research on vari-
ous bioremediation techniques, existing literature 
predominantly focuses on isolated laboratory-
scale removal efficiencies, often overlooking the 
complex environmental heterogeneity and op-
erational stability required for large-scale aquatic 
restoration. Furthermore, integrative analyses 
that systematically connect biological remedia-
tion mechanisms with emerging digital-enabling 
technologies, such as bionanotechnology and ar-
tificial intelligence of things (AIoT), remain lim-
ited (Alakkari and Ali, 2025).

To address these limitations, this review 
critically synthesises existing evidence on heavy 
metal toxicity, sources, and remediation strate-
gies, and advances a decision-oriented analytical 
framework that links technological readiness, en-
vironmental compatibility, and sustainability con-
straints. Rather than prescribing future research 
directions, the framework provides a structured 
basis for interpreting comparative evidence and 
identifying trade-offs relevant to real-world reme-
diation contexts, particularly within sustainability 
and circular economy considerations.

THE SOURCES AND TOXICITY 		
OF HEAVY METALS POLLUTION 

Anthropogenic activity shows a significant 
contribution to waterways polluted by heavy 
metals (Ahmad, 2025). The most harmful heavy 
metals that negatively affect aquatic ecosystems 
include Pb, Cr, Hg, As, and Cd (Rajan and Nan-
dimandalam, 2024). Industrial waste, such as 
that from battery factories, electroplating, metal 
smelting, and chemical industries, contains waste 
that is often high in heavy metals (Khan et al., 
2021). An alarming 80% of industrial and munic-
ipal wastewater is released into aquatic habitats 
globally without any pre-treatment, according to 
the United Nations World Water Development 
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Report for 2021(Visvanathan et al., 2024). The 
disposal of waste from petrochemical plants that 
produce As and Cd contaminates drinking water 
sources (Mokarram et al., 2020). Mining activi-
ties increase the release of Pb and Cr metals (Ad-
do-Bediako et al., 2021). The agricultural sector, 
with its use of fertilisers and pesticides containing 
As, Pb, Cd, and Cr metals, can leach these metals 
into groundwater (Choudhury et al., 2024). Do-
mestic waste disposal and urbanisation contrib-
ute to Hg metal pollution in aquatic environments 
(Adewumi and Ogundele, 2024). 

The existence of heavy metals in aquatic 
environments degrades water quality (Rekha, 
2023). Water is an indispensable natural resource, 
crucial for the sustenance of life on Earth (Jung 
et al., 2023). Access to potable and secure water 
has emerged as a governmental priority initiative 
within the worldwide framework known as the 
sustainable development goals (SDGs) (Basuki 
et al., 2024). The United Nations World Water 
Development Report, published by UNESCO 
in 2018, indicates that approximately 47% of 
the global population lacks access to safe, clean 
drinking water. This proportion is expected to in-
crease to 57% by 2050 in direct proportion to the 
human population, anticipated to rise between 9.4 
billion and 10.2 billion, predominantly compris-
ing individuals from Africa and Asia (Ismail et 
al., 2024). In many regions globally, the average 
concentrations of heavy metals in surface water 
substantially surpass the permissible limits for 
potable water (Kumar et al., 2020).

The United States Environmental Protection 
Agency (US-EPA) and the World Health Orga-
nization (WHO) have established maximum al-
lowable limits for heavy metals in potable wa-
ter. The allowable amounts in potable water are 
enumerated in Table 1. Heavy metals cause toxic 
effects if they exceed the maximum tolerable lim-
its. Heavy metal contamination in drinking water 

has diverse health implications, affecting multiple 
organ systems and posing both non-carcinogenic 
and carcinogenic risks (Radfard et al., 2023). Fig-
ure 1 shows the mechanism of heavy metal mi-
gration within the drinking water contamination 
chain and its effects on human health.

Lead (Pb) is a harmful environmental con-
taminant that has severe toxic effects on numer-
ous bodily organs (Alisha et al., 2018). Lead 
exposure can induce neurological, respiratory, 
urinary tract, and cardiovascular disorders via 
immunomodulatory, oxidative, and inflammatory 
pathways (Balali-Mood et al., 2021). Skin dis-
coloration, and paralysis are the results of exces-
sive exposure to lead in water (Rerknimitr et al., 
2019). Children with elevated blood lead levels 
may encounter growth delays, auditory impair-
ment, anemia, behavioral and cognitive difficul-
ties, diminished IQ, and hyperactivity (Embirsh, 
2022). Lead exposure in adults may lead to re-
productive complications, hypertension, and im-
paired kidney function (Ushurhe et al., 2024).

Chromium (Cr), particularly Cr (VI), is infa-
mous for its mutagenic and carcinogenic charac-
teristics (Kotyk and Iskra, 2024). Contact to chro-
mium (VI) elements in various forms can result 
in lung cancer and other health detriments (Shi 
et al., 2022). The liver is the principal organ im-
pacted by Cr (VI) exposure, and such exposure 
through oral consumption of water has increased 
the prevalence and mortality rates of liver cancer 
(Yang et al., 2022). The development of allergic 
contact dermatitis due to Cr exposure has also 
been found in large numbers (Mitra et al., 2022). 
Chromium (VI) induces DNA damage, gastric 
cancer, cutaneous tumors, pulmonary cancer, and 
adversely impacts the immune system, gastro-
intestinal tract, liver, and kidneys contributes to 
cancer mortality (Aklilu et al., 2024).

Mercury (Hg) is a prevalent pollutant in nat-
ural water bodies and is highly toxic to human 
health (Pant et al., 2024). Methylmercury (Me-
Hg), one of the many chemical forms of mercury, 
is highly neurotoxic and has been linked to Mina-
mata sickness (Mallongi et al., 2022). The food 
chain is one way for this metal to enter the human 
body and cause neurodevelopmental disorders 
and severe immune reactions (Grandjean, 2024). 
Inside cells, mercury can lead to oxidative stress 
and neurological disorders because it is extremely 
toxic to mitochondria (Dong and Li, 2024). 

Arsenic (As) is an extremely poisonous 
metalloid with an atomic number of 33, existing 

Table 1. Maximum tolerable concentrations of heavy 
metals in potable water (EPA 822-F-18-001, 2018; 
World Health Organization (WHO), 2022) 

Heavy metals US EPA, 2018 (mg/L) WHO, 2022 (mg/L)

Pb 0.015 0.01

Cr 0.10 0.05

Hg 0.0003 0.006

As 0.0003 0.01

Cd 0.005 0.003
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in inorganic and organic forms (Ganie et al., 
2024). The danger of the inorganic form enter-
ing the body, primarily through drinking water, 
is much greater than the organic form (Ahmed 
et al., 2022). It has adverse health effects, in-
cluding disorders related to the neurologi-
cal, respiration, and gastrointestinal systems 
(Fowler et al., 2022). Contaminated drinking 
water can result in peripheral neuropathy, sleep 
disturbances, cognitive impairments, persistent 
cough, pulmonary diseases, gastroenteritis, and 
gastrointestinal illnesses (Akhavan and Gol-
chin, 2021). A notable correlation exists be-
tween elevated arsenic levels in potable water 
and the incidence and mortality of kidney can-
cer (Jaafarzadeh et al., 2023). 

Cadmium (Cd) is a toxic heavy metal that 
poses a considerable threat to human health. Cd 
enters the body through water with a half-life 
(10–30 years)(Genchi et al., 2020), accumulating 
mainly in the liver, kidneys, bones, and other or-
gans, harming the target organs irreparably (Pu-
rushottam and Reddy, 2024). Consumption of 
Cd-contaminated water hurts various tissues, the 
cardiovascular system, and the immune system 
(Rezaei et al., 2019). The kidney is the primary 
target organ and exhibits the highest sensitivity 
to cadmium pollution, resulting in a diminished 
glomerular reabsorption rate (Qing et al., 2021). 
The findings indicated that doses of As and Cd in 
water sources may significantly correlate with in-
cidence rates of stunting (Oginawati et al., 2023). 

Figure 1. Heavy metal contamination in drinking water and health effects
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Acute and chronic hepatotoxicity from cadmium 
can lead to liver failure, hence elevating the risk 
of cancer (Mitra et al., 2022).

REMOVAL OF HEAVY METALS

The limitations of conventional methods 
for eliminating heavy metals from water have 
prompted researchers to develop sustainable, 
cost-effective, and environmentally friendly tech-
niques. These alternatives aim to minimise energy 
consumption, chemical use, and secondary waste 
(Singh et al., 2024). Bioremediation utilises bio-
logical agents to restore and rehabilitate contami-
nated environments, including aquatic ecosystems. 
This technique uses the inherent metabolic func-
tions of microbes, plants, and animals to transform 
hazardous chemicals into less or non-toxic forms 
(Mahanayak, 2024). Furthermore, nanotechnol-
ogy contributes to enhancing sustainability and 
efficacy in the extraction of heavy metals from 
aquatic ecosystems (Olawade et al., 2024).

Biosorption using plant biomass and 
agricultural waste 

Biosorption is a bioremediation technique 
whose development is increasingly recognised as 
the method of choice in the process of removing 
heavy metals from aquatic environments (Nguyen 
et al., 2025). Biosorption is the passive physico-
chemical binding of various substances to a bio-
logical matrix, one example of which is the use of 
plant-based products and agricultural waste as bio-
sorbents (Paranjape and Sadgir, 2023). Cellulose 
and lignin, present in plant materials, are proficient 
at biosorbing heavy metal ions (Kaur et al., 2022). 
The process of selecting biosorbents is important, 
especially those derived from abundant, renew-
able, non-toxic, and cost-effective raw materials, 
as this directly impacts efficiency, cost-effective-
ness, environmental compatibility, and biomass 
absorption capacity (Phan and Phan, 2023).

The efficacy of biosorption is affected by vari-
ous parameters, including pH, temperature, ad-
sorbent dosage, biomass concentration, contact 
duration, and concentrations of other pollutants 
(Kumar et al., 2023). The pH parameter influences 
the intensity of electrostatic interactions between 
metal ions and the biosorbent surface. Low pH 
levels cause interactions with metal cations to de-
crease due to protonation of active groups, while 

high pH levels cause groups to tend to deprotonate 
and reduce their affinity for metal ions (Ali Red-
ha, 2020). Temperature affects the increase in ion 
kinetic energy and the rate of diffusion. In endo-
thermic systems, temperature increases sorption 
capacity, and in exothermic systems, temperature 
decreases sorption capacity (Singh et al., 2024). 
The biosorption mechanism depends on the bio-
mass concentration, which affects how efficiently 
metal ions are removed from aqueous solutions 
(Vishan et al., 2019). Contact time correlates with 
sorption equilibrium; the initial rate will slow 
down as saturation approaches (Jain et al., 2016). 
Target pollutants can form complexes with vari-
ous other metals that compete for binding sites, 
thereby reducing the effectiveness of target metal 
ion removal (Harshala and Wagh, 2022).

The form and classification of biomass great-
ly influence surface area, pore-size distribution, 
and the concentration of active functional groups 
(Madhavi et al., 2021). Diverse functional groups 
in plants, including amino, carboxylate, pheno-
lic, and hydroxyl groups, serve as metal-binding 
agents (Nobahar et al., 2021). The morphologi-
cal characteristics of the surface and functional 
groups of biosorbents can be determined using 
scanning electron microscopy (SEM), energy 
dispersive x-ray spectroscopy (EDX), Brunauer–
Emmett–Teller (BET) analysis, and Fourier trans-
form infrared spectroscopy (FTIR) (Sebayang et 
al., 2023). The pH point of zero charge can be 
measured to elucidate the biosorption mechanism 
by identifying the pH at which the biosorbent ex-
hibits a neutral surface charge, reflecting the anal-
ogous adsorption of H+ and OH- ions (Stadnik 
et al., 2023). Biosorption is a viable alternative 
to traditional heavy metal removal techniques; 
however, the problems related to its implementa-
tion must be addressed (Karnwal, 2024). Table 2 
shows the capacity of various plant biomass and 
agricultural waste to remove heavy metals Pb, Cr, 
Hg, As, and Cd from the aquatic environment.

Despite the high efficiency reported in many 
studies, the practical deployment of plant-based 
biosorbents faces several engineering bottlenecks. 
These challenges range from the mechanical fra-
gility of raw biomass to the difficulties associated 
with post-treatment recovery. Table 3 synthesizes 
these critical limitations and proposes strategic 
solutions, emphasizing the transition from raw 
biological materials to functionalized hybrid sys-
tems to enhance field-scale applicability.
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Microbial remediation

Microbial remediation is a novel strategy 
for environmental conservation that is essential 
for removing contaminants, including nutrients, 
petroleum hydrocarbons, and hazardous metals 
(Wang et al., 2025). Bacterial bioremediation pro-
vides an environmentally sustainable and cost-ef-
fective approach for treating metal-contaminated 
industrial wastewater (Patil et al., 2024). Bacte-
rial cells are generally between 0.5 to 5 μm in 
size and are curved rod-shaped, which can be ob-
served singly, in pairs, or even in chains. Their 
prevalence, broad enzyme activity, and ability to 
adapt to extreme conditions make bacteria highly 
useful in wastewater treatment worldwide (Nas-
cimento et al., 2018). 

Bacteria employ biosorption and bioaccumu-
lation mechanisms (Patil et al., 2024). Biosorp-
tion is highly effective for heavy metals such as 
lead, as bacteria can sequester metal ions, thereby 
reducing their environmental bioavailability and 
toxicity. This process entails the passive adhesion 
of contaminants to bacterial cell surfaces, which 
can be enhanced by cell wall constituents such as 
polysaccharides, proteins, and lipids (Sevak et al., 
2021). Unlike biosorption, bioaccumulation is an 
active process in which pollutants are absorbed 
and internalized by bacterial cells. This process 
often requires energy in the form of ATP and ne-
cessitates specialized transport proteins that en-
able the translocation of contaminants across cel-
lular membranes (Kumar et al., 2024). 

Bacteria can utilize heavy metal ions for met-
abolic processes and detoxify them via soluble 
enzymes synthesized by the bacteria (Alotaibi 

et al., 2021). Bacteria absorb metals into their 
cells, frequently sequestering them in less harm-
ful forms (Hernandez-Guerrero et al., 2025). The 
intracellular and extracellular pathways involved 
in these processes are illustrated in Figure 2. For 
instance, some bacterial cells, such as Bacillus sp. 
convert Cr (VI) into Cr (III), which is significant-
ly less toxic to aquatic environments. The reduc-
tion processes illustrated in Figure 2 demonstrate 
that Bacillus sp. is a viable bioremediation agent 
for mitigating chromium toxicity in wastewater 
(Seragadam et al., 2021). 

Microbial remediation is both environmental-
ly sustainable and cost-effective, with the ability 
to degrade a range of organic and inorganic con-
taminants, including heavy metals (Chatterjee et 
al., 2022). Advances in genetic engineering have 
enabled the enhancement of microbial capabili-
ties by introducing specific genes for metal che-
lation and detoxification, thereby improving bio-
remediation efficiency (Kumar and Chakraborty, 
2024). However, several operational limitations 
persist, including high sensitivity to environmen-
tal fluctuations, the risk of toxic intermediate for-
mation, and challenges in field-scale scalability. 
These engineering bottlenecks, along with their 
corresponding strategic solutions, are summa-
rized in Table 4, highlighting the transition from 
conventional biotreatment to smart, technology-
driven microbial systems. 

The reported bioremediation efficacy of numer-
ous heavy metal-tolerant bacterial strains is described 
in Table 5, complementing these strategic strategies.

Table 2. Heavy metal removal by plant biomass and agricultural waste
Plant biomass and agricultural waste Target metal pH Biosorption capacity (mg/g) Reference

Banana (Musa sapientum) peel Pb (II) 5 2.1 (Nurain et al., 2021)

Schleichera oleosa bark Pb (II) 6 69.44 (Khatoon et al., 2018)

Lavandula pubescens Decne Pb (II) ≤ 7 91.32 (Alorabi et al., 2020)

Sunflower waste Pb (II) 5 91.8 (Radenkovic et al., 2024)

Eichhornia crassipes Cr (VI) 3 41.53 (Tri et al., 2024)

Sambucus nigra L Cr (VI) 2 6.389 (Mancilla et al., 2022)

Water hyacinth Hg (II) 5 123.5 (Murmu et al., 2024)

Camellia oleifera shell Hg (II) 2 57.6 (Chen et al., 2023)

Corn bract Hg (II) 4 332.50 (Xu et al., 2022)

Pine needles As (III) 4 3.27 (Jain et al., 2016)

Jamun seed Cd (II) 6 3.88 (Giri et al., 2021)

Corn husk fiber Cd (II) 6 23.0 (Zhang et al., 2024)
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Phytoremediation – plant-based removal

Phytoremediation is an environmentally 
friendly and economical technology that utilises 
the natural ability of certain plants known as hy-
peraccumulators to extract, decompose, or bind 
environmental pollutants, including heavy met-
als in aquatic environments, thereby sustainably 
rehabilitating contaminated ecosystems (Kumar 
et al., 2024). Phytoremediation mechanisms 
encompass phytoextraction, phytodegradation, 
phytostabilization, phytovolatilization, and rhi-
zodegradation (Rout et al., 2024). Hyperaccu-
mulator plants can store large amounts of heavy 

metals without causing toxic effects. Phytore-
mediation is a better alternative to conventional 
methods. However, the main challenges include 
the generally slower rate of remediation, as it 
depends on plant growth and metabolic pro-
cesses (Kafle et al., 2022), Choosing appropriate 
plants, as not all species are efficient in eliminat-
ing contaminants (LM et al., 2025), Pest factors, 
and environmental stress can also reduce the ef-
fectiveness of phytoremediation (Singh et al., 
2024). Table 6 illustrates the extraction of heavy 
metals Pb, Cr, Hg, As, and Cd through phytore-
mediation in aquatic ecosystems.

Figure 2. Bacterial-mediated bioremediation of Cr (VI) and reduction mechanisms within cells

Table 3. Critical limitations and strategic solutions for plant-based biosorption in aquatic systems
Limitation category Technical constraint Potential solutions (strategic improvements) Reference

Operational 
separation

Difficulty in separating and 
recovering biomass from 
treated effluent.

Immobilization & Magnetization: Employing 
biomass immobilization within polymer matrices 
(e.g., alginate/chitosan) or synthesizing magnetic 
bio-nanocomposites to facilitate rapid phase 
separation using external magnetic fields.

(Ramrakhiani et al., 
2016)

Environmental 
sensitivity

Efficiency is significantly 
influenced by pH, 
temperature, and the 
presence of competing ions.

Surface Functionalization: Applying chemical 
modifications (acid/base activation or grafting 
chelating agents) to enhance site-specific affinity 
and buffering capacity against fluctuating field 
conditions.

(Srivastava et al., 
2023)

Structural integrity

Biological materials lack 
the mechanical strength 
and rigidity required for 
continuous use.

Hybrid Composites: Integrating biomass with 
robust support materials like carbon nanotubes, 
graphene oxide, or synthetic polymers to increase 
mechanical durability in large-scale fixed-bed or 
fluidized-bed reactors.

(Srivastava et al., 
2023)

Scalability gap

Performance drop-off when 
transitioning from controlled 
laboratory settings to 
industrial scales.

Pilot-Scale Optimization & AIoT: Conducting 
rigorous pilot-scale studies and integrating 
Artificial Intelligence of Things (AIoT) for real-time 
monitoring and autonomous control of operational 
parameters to ensure stability.

(Ramrakhiani et al., 
2016)
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Nanotechnology-based approaches

At present, nanoparticle technology is gar-
nering considerable interest in the domain of 
metal ion extraction from aquatic ecosystems 
(Mohanapriya et al., 2023). Nanomaterials are 
characterized as substances including particles 
with dimensions ranging from 1.0 to 100 nm in 
at least one dimension (Korkmaz and Baykal, 
2024). Nanomaterials are primarily catego-
rized into two types: carbon-based and inor-
ganic (Sune et al., 2024). Nanomaterials func-
tion as effective adsorbents and catalysts for 
environmental remediation owing to their el-
evated chemical reactivity, substantial adsorp-
tion surface area, capacity for low-temperature 
alteration, and atomic-level activity (Kamble, 
2024). All these properties of nanoparticles are 

beneficial for the biosorption of heavy metals 
from polluted environments (Al-Amrani and 
Onaizi, 2024). Nevertheless, several drawbacks 
exist with some widely utilised nanomaterials, 
including their high cost, potential toxicity, dif-
ficulty in recycling, and ease of interaction with 
other media (Perez-Hernandez et al., 2021). 
Despite these limitations, the development of 
nanomaterials continues through rigorous re-
search and regulation to develop safer nanoma-
terials, improve recycling methods, and con-
duct comprehensive risk assessments to reduce 
potential health and environmental impacts 
(Kumar et al., 2024). To remove metal ions, a 
variety of nanoparticles have been created. Ta-
ble 7 illustrates instances of nanomaterials and 
their capacity to adsorb Pb, Cr, Hg, As, and Cd 
in aquatic ecosystems.

Table 4. Engineering bottlenecks and strategic solutions in microbial bioremediation
Limitation category Technical constraint Potential solutions (strategic improvements) Reference

Environmental 
sensitivity

Effectiveness is highly 
dependent on specific pH, 
temperature, and nutrient 

availability.

Adaptive Process Control: Integrating AIoT-based 
sensors for real-time monitoring and automated 

adjustment of environmental parameters to maintain 
optimal microbial activity.

(Patil et al., 2024)

Metabolic by-
products

Potential for incomplete 
breakdown, leading to 
the generation of more 
hazardous intermediate 

metabolites.

Metabolic Engineering & Omics: Utilizing genomics 
and proteomics to map metabolic pathways, 

ensuring complete detoxification or sequestration of 
metals into stable, non-toxic forms.

(Wang et al., 2025)

Field-scale stability

Microorganisms often fail 
to compete with indigenous 

species or survive 
environmental fluctuations 

in the field.

Microbial Immobilization & Consortia: Using robust 
microbial consortia (multi-strain) and immobilizing 

cells in protective bio-carriers (e.g., biochar or 
hydrogels) to enhance resilience and survivability.

(Kumar and 
Chakraborty, 2024)

Kinetics and 
duration

Bioremediation typically 
requires a significantly 

longer time to reach target 
levels compared to chemical 

methods.

Bionanotechnology Synergy: Integrating microbes 
with metal-oxide nanoparticles to accelerate 
electron transfer and catalytic rates, thereby 

enhancing the kinetics of metal reduction (e.g., 
Cr(VI) to Cr(III)).

(Seragadam et al., 
2021)

Table 5. Bacterial species and removal efficiency

Bacteria Target metal Initial concentration 
(mg/L)

Removal efficiency
(%) Reference

Bacillus subtilis Pb (II) 500 100 (Rocco et al., 2024)

Shewanella oneidensis Hg (II) 50 73 (Fang et al., 2024)

Zhihengliuella alba sp. T2.2 Hg (II) 162 39.5 (Fernandez-F et al., 2022)

Bacillus sp. Cr (VI) 40 95.24 (Seragadam et al., 2021)
Microbacterium paraoxydans 
strain VSVM IIT (BHU) Cr (VI) 50 99.96 (Singh and Mishra, 2021)

Bacillus sp. As (III) 4500 50 (Dey et al., 2024)

Bacillus cereus As (III) 1000 50 (Dey et al., 2024)

Bacillus subtilis Cd (II) 100 92.3 (Rocco et al., 2024)

Serratia bozhouensis CdIW2 Cd (II) 10 65.79 (Rezaee and Ahmady-
Asbchin, 2023)
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DECISION-ORIENTED EVALUATION OF 
BIOREMEDIATION STRATEGIES

From efficiency-centred assessment to 
decision-oriented evaluation

Most studies on heavy metal bioremediation 
have traditionally assessed remediation perfor-
mance using laboratory-scale removal efficien-
cies under controlled conditions (Ali Redha, 
2020). Although such metrics are essential for 
understanding fundamental mechanisms, they 
provide limited guidance for decision-making in 
complex aquatic environments where environ-
mental heterogeneity, operational constraints, 
and biosafety considerations are decisive (Ram-
rakhiani et al., 2016). For example, biosorption 

systems based on agricultural waste often achieve 
high Pb or Cd removal under optimised pH, yet 
their performance rapidly declines under fluctuat-
ing hydrodynamics or competitive ion conditions 
typical of natural waters (Harshala and Wagh, 
2022; Jain et al., 2016).

Synthesis across Tables 2–7 reveals a consistent 
pattern: technologies demonstrating high experi-
mental efficiency frequently encounter substantial 
barriers during scale-up, including limited regen-
eration capacity, environmental instability, elevated 
operational costs, or unresolved ecological risks 
(Ayach et al., 2024; Md Isa, 2022). These findings 
indicate that removal efficiency alone is an insuffi-
cient indicator of field applicability (Paranjape and 
Sadgir, 2023). Accordingly, this review advances a 
shift from efficiency-centred assessment towards 

Table 6. Heavy metal removal by phytoremediation

Plant-based Target metal Monitoring time 
(day)

Average

removal (%)
Reference

Eichhornia crassipes Pb (II) 12 45.81 (Adelodun et al., 2020)

Pistia stratiotes Pb (II) 21 79.6 (Khambali et al., 2024)

Salvinia natans (L.) All. Hg (II) 21 94 (Sitarska et al., 2023)

Echinodorus palaefolius Hg (II) 3 91.84 (Prasetya et al., 2020)

Portulaca oleracea Cr (VI) 7 29.4 (Banik et al., 2025)
Eichhornia crassipes 
(Water Hyacinth) Cr (VI) 7 81.1 (Banik et al., 2025)

Azolla pinnata As (III) 10 88.06 (Kumar and Banerjee, 2018)

Lemna minor As (III) 10 82.56 (Kumar and Banerjee, 2018)

Ceratophyllum demersum L. Cd (II) 15 97.9 (Abdulwahid, 2023)
Ipomoea aquatica 
(Water Spinach) Cd (II) 20 82.20 (Badrul Hisam et al., 2022)

Table 7. Nano materials and heavy metal adsorption capacity

Nanomaterials Target metal Adsorption capacity 
(mg/g) References

Nanocomposite graphene oxide Pb (II) 142.9 (Akhdhar and Yakout, 2023)

Nanofibers of polyvinyl alcohol Pb (II) 444.2 (Turan and Kalfa, 2022)

Imogolite with nanoscale zero-valent iron (Imo-nZVI) Pb (II) 73.8 (Martinis et al., 2022)

Carbonaceous nanomaterial (N, S-HFC-180) Cr (VI) 164,29 (Li et al., 2024)

nano-scale zerovalent iron (S-nZVI) Cr (VI) 75 (Wang et al., 2024)

Poly-2-mercapto-1,3,4-thiadiazole nanoparticles Hg (II) 186.9 (Huang et al., 2018)

CMC/Fe3O4 nanocomposite Hg (II) 243.52 (Zirpe and Thakur, 2023)

Imogolite with nanoscale zero-valent iron (Imo-nZVI) Hg (II) 62.3 (Martinis et al., 2022)

Magnetic carbon-based nanocomposite As (III) 10.1 (Jokic Govedarica et al., 2024)

A Ca-carbonate layered double-hydroxide nanosheet As (III) 452 (Zahir et al., 2021)

Nanocomposite graphene oxide Cd (II) 125.0 (Akhdhar and Yakout, 2023)

Carbon nanotubes (SWCNTs/Fe3O4 @PDA) Cd (II) 186.48 (Ghasemi et al., 2020)

Nano zero valent iron (nZVI) Cd (II) 213 (Tarekegn et al., 2021)
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a decision-oriented evaluation paradigm that ac-
counts for real-world implementation constraints.

This transition is operationalised through the 
decision-oriented evaluation matrix (Table 8), 
which explicitly links bioremediation strategies 
with environmental conditions, technological 
readiness, and sustainability-related constraints. 
Rather than ranking technologies based on isolated 
performance indicators, the matrix integrates sys-
tem controllability, scalability, biosafety require-
ments, and long-term operational feasibility. For 
instance, microbial remediation may exhibit lower 
nominal removal efficiencies than nanomaterial-
based approaches, yet its adaptability through bio-
logical regulation and omics-assisted monitoring 
can confer greater suitability for controlled in situ 
applications (Ali Redha, 2020; Ayach et al., 2024). 
Table 8 thus represents a core analytical contribu-
tion, demonstrating that remediation effectiveness 
emerges from alignment between environmental 

complexity and technological maturity rather than 
intrinsic method efficiency alone.

Operationalising environmental 
heterogeneity and technological readiness

The decision-oriented synthesis highlights 
environmental heterogeneity as a critical determi-
nant of remediation feasibility. Aquatic systems 
exhibit dynamic physicochemical conditions, in-
cluding variations in pH, temperature, salinity, re-
dox potential, and contaminant speciation (Rad-
fard et al., 2023). Evidence summarised in Tables 
2–7 consistently shows that remediation strate-
gies optimised under stable laboratory conditions 
often lose robustness under such variability.

By embedding environmental complexity 
alongside indicators of technological readiness, 
Table 8 clarifies trade-offs that are often obscured 
in method-centric reviews. Technologies at lower 
readiness levels may achieve high efficiencies 

Table 8. Decision-oriented evaluation matrix linking bioremediation strategies, environmental conditions, 
technological readiness, and sustainability constraints

Bioremediation 
strategy

Target environmental 
conditions

Sustainability & 
Circular economy 

potential

Smart integration 

(AIoT & Omics)
Decision-oriented 

strategic implications
Strengths and 

limitations

Plant-based 
biosorption 
(agricultural 
waste, biomass 
residues)

Low-to-moderate 
metal concentrations; 
relatively stable pH; 
low hydrodynamic 
disturbance; small-

scale or decentralised 
systems

High potential for 
waste valorisation 

and low-cost 
resource reuse; 
limited material 
regeneration

Limited 
applicability; 

sensor-based 
monitoring 
feasible for 

influent quality

Suitable for low-
cost, short-term 

mitigation or pre-
treatment stages; 
not recommended 
as a standalone 

solution for long-term 
remediation

Low cost and 
environmentally 
benign; limited 

selectivity, 
regeneration 
capacity, and 

scalability

Microbial 
remediation

Dissolved or speciated 
metals; biologically 

active environments; 
controlled redox and 
nutrient conditions

Moderate 
potential 

through metal 
immobilisation 
or recovery; 

biosafety 
management 

required

High relevance; 
omics tools 

for community 
stability 

assessment and 
AIoT for adaptive 
process control

Appropriate for in 
situ remediation 
where biological 
stability can be 

maintained; requires 
regulatory oversight 

and biosafety 
protocols

High specificity 
and adaptability; 

sensitive to 
environmental 
stressors and 
operational 
instability

Phytoremediation

Shallow water bodies; 
low-to-moderate 
contamination; 

long residence time 
systems

Moderate-to-
high potential 
via biomass 

harvesting and 
ecosystem 
restoration

Limited real-
time integration; 

monitoring 
mainly indirect

Best suited for long-
term ecological 

restoration 
rather than rapid 

contaminant removal

Ecologically 
beneficial and low 
energy demand; 

slow kinetics 
and land-use 
constraints

Nanotechnology-
based 
approaches

High metal 
concentrations; 

complex matrices; 
industrial or point-
source pollution

Variable potential; 
depends on 
nanoparticle 
recovery and 

reuse strategies

High 
compatibility with 

smart sensing 
and automation

Effective for targeted, 
high-efficiency 
removal; best 

applied in controlled 
or hybrid systems

High removal 
efficiency and 

selectivity; 
cost, recovery, 
and ecotoxicity 

concerns

Hybrid and 
integrated 
systems

Heterogeneous 
environments; 

fluctuating 
contamination profiles; 
field-scale applications

High potential 
through combined 

efficiency and 
material recovery

Strong 
relevance; AIoT 

enables real-
time optimisation 

and system 
learning

Most suitable for 
complex, real-world 

aquatic systems 
requiring adaptive 

management

Enhanced 
robustness 

and flexibility; 
higher design 

and operational 
complexity
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under narrowly defined conditions but remain 
constrained by limited scalability and environ-
mental sensitivity (Ali Redha, 2020). Conversely, 
approaches with greater operational maturity – 
such as biologically mediated systems supported 
by adaptive monitoring – may exhibit lower peak 
efficiencies yet offer enhanced stability and con-
trollability in heterogeneous environments (Ay-
ach et al., 2024; Paranjape and Sadgir, 2023). 
This synthesis reframes technological readiness 
as a function of environmental compatibility rath-
er than developmental stage alone.

Biosafety constraints and the role 		
of adaptive monitoring

Biosafety considerations emerge as a central 
decision constraint when transitioning bioreme-
diation strategies from laboratory to field applica-
tions (Radfard et al., 2023). Risks associated with 
microbial dissemination, nanoparticle persis-
tence, and unintended ecological interactions are 

insufficiently captured by efficiency-based met-
rics (Ali Redha, 2020; Ramrakhiani et al., 2016). 
Table 8 explicitly incorporates these constraints, 
highlighting their influence on strategy selection 
and operational feasibility.

To translate matrix-based synthesis into an op-
erational decision process, Figure 3 presents a flow-
chart-based architecture integrating site characteri-
sation, functional applicability, biosafety thresh-
olds, and technological readiness. Within this sys-
tem, adaptive monitoring enabled by AIoT-based 
sensing and omics-informed biological assessment 
functions as a regulatory feedback mechanism rath-
er than an auxiliary enhancement (Akeem 2024; 
Chrobak et al., 2023). Bidirectional feedback loops 
support continuous performance evaluation, early 
risk detection, and iterative optimisation, thereby 
strengthening biosafety management and system 
resilience under dynamic environmental conditions.

Figure 3. Decision-oriented flowchart for the selection and implementation of heavy metal
bioremediation strategies in aquatic ecosystem
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Implications of the decision-oriented 
evaluation architecture for real-world 
remediation

The integrated use of Table 8 and Figure 3 
reconceptualises heavy metal bioremediation 
as a context-dependent decision process rather 
than a technology-centred optimisation exercise. 
By jointly considering environmental variabil-
ity, technological readiness, and biosafety con-
straints, the framework enables more realistic as-
sessments of operational feasibility and environ-
mental defensibility.

This architecture demonstrates that technolo-
gies with superior laboratory-scale performance 
may not constitute optimal field solutions when 
scalability, ecological risk, and regulatory consid-
erations are evaluated concurrently (Poonam et 
al., 2021). Through transparent trade-off analysis 
and adaptive feedback integration, the proposed 
decision-oriented framework bridges the gap be-
tween evidence synthesis and field-level decision 
support. In doing so, it advances existing biore-
mediation research from descriptive comparison 
towards system-level interpretation aligned with 
environmental health protection, sustainability 
objectives, and regulatory accountability.

CONCLUSIONS

The objective of developing a decision-orient-
ed perspective for heavy metal bioremediation is 
achieved in this study through a systematic reor-
ganisation of existing evidence beyond technology-
specific efficiency reporting. Unlike prior reviews 
that predominantly catalogue removal performanc-
es under controlled laboratory conditions, this work 
demonstrates that such an approach is insufficient 
to support real-world remediation decisions in en-
vironmentally heterogeneous aquatic systems.

The principal scientific contribution of this 
review is the formulation of a structured decision-
oriented evaluation architecture, operationalised 
through a comparative evaluation matrix (Table 8). 
This matrix represents a previously unavailable syn-
thesis that explicitly links bioremediation strategies 
with environmental conditions, technological readi-
ness levels, and sustainability-related constraints. 
By integrating these dimensions, the study reveals 
that the suitability of bioremediation technologies 
is fundamentally context-dependent and cannot be 
inferred from removal efficiency metrics alone.

Through this synthesis, the review fills a criti-
cal gap between descriptive assessments of biore-
mediation performance and implementation-rele-
vant decision support. The analysis clarifies why 
technologies demonstrating high laboratory ef-
ficiency frequently encounter limitations at field 
scale, particularly when biosafety requirements, 
system controllability, and long-term operational 
feasibility are considered. The accompanying de-
cision flowchart (Figure 3) formalises this evalu-
ative logic into a transparent selection pathway, 
serving as an operational abstraction of the matrix 
rather than an illustrative concept.

The evaluation framework presented herein 
opens a pathway for translating accumulated 
experimental knowledge into structured, con-
text-aware remediation planning. By enabling 
systematic comparison across environmental, 
technological, and sustainability dimensions, the 
study provides a reproducible basis for evidence-
informed decision-making in aquatic heavy metal 
remediation, supporting regulatory assessment 
and practical implementation without prescribing 
specific technological outcomes.
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