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INTRODUCTION

Indonesia’s extreme topography, coupled with 
climate change, urbanization, and environmental 
degradation, has led to increased landslide activ-
ity, resulting in loss of life and property (Tirsyayu 

et al., 2025). Therefore, increased disaster man-
agement preparedness is essential to mitigate 
the impact of disasters (Khalil et al., 2020). In 
the area of South Sulawesi, particularly in North 
Luwu Regency, landslides are frequently report-
ed. North Luwu Regency is characterized by steep 
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ABSTRACT
North Luwu Regency exhibits a high susceptibility to landslides; ten major landslides in South Sulawesi occurred 
in the Balease watershed of North Luwu Regency over a ten-year period. We aimed to inventory landslide oc-
currences, identify the controlling factors of landslides, generate landslide hazard maps, and determine the most 
reliable method for landslide susceptibility modeling in the Balease watershed. Spatial statistical analyses using 
the weight of evidence (WoE) and logistic regression (LR) models were performed. Landslide inventory mapping 
was conducted through visual interpretation of SPOT-6 satellite imagery (2020) and WorldView-3 imagery (2024). 
The parameters included topographic, hydrological, geological, climatic, soil, and anthropogenic factors. Model 
validation was performed using the area under the curve (AUC) approach. The results indicate that approximately 
1.832 mapped landslide locations occurred during 2020–2024. Notable differences in area coverage between the 
LR and WoE methods across landslide susceptibility classes, particularly, the LR classified a larger proportion of 
the study area as low susceptibility (99,932.95 ha) compared to WoE (79,055.12 ha). In contrast, WoE allocated 
a substantially larger area to the high susceptibility class (34,073.73 ha) than LR (7,780.50 ha), indicating that 
WoE is more sensitive in identifying areas with a higher likelihood of landslide occurrence. The prominent factors 
controlling landslide occurrence in Balease watershed were rainfall with 0.91 AUC value, slope gradient (0.89), 
elevation (0.86), and stream power index (SPI) (0.85). The WoE model achieved an AUC value of 0.88, classi-
fied as good, while the LR model yielded an AUC value of 0.77, classified as fair. The study’s finding, the WoE 
of the evidence model driven mainly by rainfall and topographic factors, provides the most accurate landslide 
susceptibility assessment for the Balease watershed, supporting effective disaster mitigation and spatial planning. 
The resulting landslide hazard maps are expected to support spatial planning, disaster mitigation strategies, and 
conservation planning in landslide-prone areas of North Luwu Regency.
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terrain, complex geological structures, and a trop-
ical climate with intense and prolonged tropical 
rainfall throughout the year, which increases soil 
moisture, reduces slope stability, and all of which 
contribute to high landslide susceptibility (Zul-
fahmi et al., 2025). The landslide in North Luwu 
occurred as a result of excessive rainfall (3.822 
mm/year), a wide slope area, and land conversion, 
which reduced the soil’s ability to retain water and 
caused mass shifts during heavy rain (Thamsi et 
al., 2019). Due to its lack of vegetation to reduce 
erosion and steep slopes, North Luwu Regency is 
particularly vulnerable to landslides (Pazzi et al., 
2019). Moreover, rapid land use changes and the 
expansion of settlements into hillside areas have 
further increased landslide risk, leading to great-
er potential damage to infrastructure (Fell et al., 
2008). A total of 116 landslides occurred in South 
Sulawesi during 2014–2023, causing 15,601 fa-
talities, and ten major disasters were recorded in 
North Luwu (BNPB, 2024). These disasters are 
often intensified by secondary risks such as flash 
flooding, which results in more severe damage 
and increased numbers of fatalities. 

Spatially identifying high-risk zones, such as 
through landslide susceptibility mapping, is a non-
structural mitigation solution that offers an objec-
tive spatial basis for spatial planning, identifying 
secure zones, infrastructure development, and ex-
panding early warning systems to reduce landslide 
risks (Xiong et al., 2017). The identification of a 
vulnerable landslide area aimed to mitigate or pre-
vent landslide risks (Ahmad et al., 2023). Recent 
disaster events, like the flash floods and debris 
flows in 2020 caused by landslides in Masamba 
Sub-districts, which resulted in significant infra-
structure damage and substantial financial loss, 
highlighting the significance of improved landslide 
susceptibility mapping in North Luwu. Recent di-
sasters, such as the flash floods and debris flows in 
2020 caused by landslides in Masamba Sub-dis-
tricts, which resulted in significant infrastructure 
damage and substantial financial loss, highlight 
the significance of improved landslide susceptibil-
ity mapping in North Luwu (Ma’mur et al., 2024). 
In addition, different modeling approaches used 
in Indonesia, including statistical and machine-
learning methods, offer varying strengths to iden-
tify the most reliable method for specific regions 
(Melati et al., 2024). High-accuracy susceptibility 
maps derived from such approaches are essential 
for supporting hazard mitigation, spatial planning, 

and community protection in landslide-prone ar-
eas of Indonesia. 

Weight of evidence and LR are two statis-
tical methods commonly used in landslide sus-
ceptibility mapping. These methods can iden-
tify relationships betwen environmental factors 
and landslide occurrences (Batar and Watanabe, 
2021; Hong et al., 2017). LR models the com-
bined influence of multiple variables (Misbahu-
din, 2020) and demonstrates high predictive ac-
curacy for landslide occurrences (Małka, 2021). 
LR method was applied within a GIS framework 
to relate historical landslide occurrence records 
with multiple environmental and conditioning 
factors, estimate the statistical influence of each 
factor on landslide probability, and produce vali-
dated landslide susceptibility maps by converting 
the LR-derived probabilities into spatial hazard 
zones (Waiyasusri et al., 2023, 2025; Waiyasusri 
and Wetchayont, 2025).

Recent advances in landslide susceptibil-
ity mapping have introduced various statistical 
methods to improve prediction accuracy. Al-
though landslide susceptibility mapping using 
machine learning approaches has not been widely 
applied in Indonesia, watershed-scale studies in 
North Luwu remain limited. Moreover, few stud-
ies have systematically compared different land-
slide susceptibility mapping methods, such as LR 
and WoE, using the same dataset within this re-
gion (e.g., Nwazelibe et al., 2023; Polykretis and 
Chalkias, 2018; Xie et al., 2017). Therefore, we 
hypothesize that (1) landslide occurrences in the 
Balease watershed are influenced by topographi-
cal, hydrological, geological, climatic, soil, and 
human activity factors; (2) landslide susceptibil-
ity in the Balease watershed can be predicted us-
ing spatial statistical methods based on the rela-
tionship between landslide occurrences and their 
conditioning factors; (3) higher predictive accu-
racy in landslide hazard mapping is expected to 
be achieved using the WoE method compared to 
the LR method. We aimed to assess the landslide 
susceptibility area using the WoE and LR method 
based on selected conditioning factors. The ob-
jectives of this were to (1) inventory landslide 
occurrence locations based on satellite imagery 
data; (2) identify and determine the factors con-
tributing to landslide occurrence; (3) produce a 
landslide susceptibility map using the WoE meth-
od and the LR method and determine the most 
accurate method between the two. The outputs of 
this study include a validated landslide inventory 
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map, thematic conditioning factor maps, landslide 
susceptibility maps generated using the WoE and 
LR methods, and a comparative accuracy assess-
ment to identify the best-performing method in 
North Luwu Regency

MATERIAL AND METHODS

Research area

This study was conducted in the Balease Wa-
tershed (DAS Balease), North Luwu Regency, 
South Sulawesi, Indonesia (approximately 2°30′–
2°55′ S and 120°20′–120°40′ E), covering an area 
of about 1.000 km² (Figure 1). The Balease water-
shed consists of lowland areas in the downstream 
region and steep mountainous terrain in the up-
stream zone, with elevations generally increasing 
toward the headwaters. The Balease River repre-
sents the main river system, supported by several 
tributaries that form the watershed drainage net-
work. Geologically, the area is dominated by vol-
canic and sedimentary formations with varying 
degrees of weathering and structural complexity, 
including the presence of the Kambuno Granite. 
The elevation zone of 900–1.200 m above sea 
level represents a prominent topographic unit 
within the watershed. The study period spanned 

from January 2004 to December 2025. The land-
slide conditioning factors used in this study, along 
with their data sources and applied spatial analy-
sis techniques, were represented in Table 1.

Inventory of landslide events

An extensive catalog of landslide occurrences 
was created to record the spatial distribution of 
landslides throughout the research region. This 
inventory was created using high-resolution sat-
ellite images and on-screen digitization meth-
ods with ArcGIS software (version 10.8.2; ESRI 
2021). To improve the accuracy and reliability of 
the susceptibility analysis, the landslide inventory 
data were methodically partitioned into two sub-
sets: 70% of the identified landslide points were 
assigned for model training and parameter opti-
mization. In contrast, the remaining 30% were 
reserved for model validation. 

Weight of evidence method

The weight of evidence method is a rigorous 
statistical approach utilized to evaluate the cor-
relation between environmental variables and 
landslide events. This method, based on Bayes’ 
theorem, integrates information from several 

Figure 1. Research location in Balease watershed, North Luwu Regency, South Sulawesi, Indonesia
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aspects to assess the likelihood of a landslide oc-
currence. The posterior probability indicates the 
possibility of a landslide occurring after integrat-
ing additional knowledge from specific factors 
(Bui et al., 2022). The conditional probability of a 
landslide event, contingent upon the presence of 
influencing factors, is expressed as follows: The 
weight of evidence method is a robust statistical 
technique that measures the impact of several 
environmental variables on landslide incidence. 
This technique utilizes Bayes’ theorem to enable 
researchers to combine multiple data sources and 
assess their collective impact on landslide prob-
ability. The posterior probability, a fundamental 
concept in WoE, represents the revised likeli-
hood of a landslide occurrence after incorporat-
ing additional data from specific environmental 
variables. This method enhances the comprehen-
sion of landslide vulnerability by considering the 
intricate interactions among various geological, 
topographical, and hydrological factors (Batar 
and Watanabe, 2021).

The utilization of the WoE methodology in 
landslide susceptibility mapping has numerous 
benefits. It provides a systematic framework for 
evaluating the relative importance of different 

factors leading to landslide events. This technique 
accepts both continuous and categorical data, 
hence augmenting its adaptability in assessing 
various environmental variables. Moreover, the 
WoE methodology enables the creation of land-
slide susceptibility maps that are easily interpre-
table and applicable for decision-makers in land-
use planning and risk management. By measuring 
the correlation between environmental variables 
and landslide occurrences, WoE improves the 
precision of forecasts concerning landslide-prone 
regions. It facilitates the formulation of efficient 
mitigation plans (Bui et al., 2022), utilizing 
equations:
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The conditional probability of the existence 
of a landslide that does not present any factors 
can be formulated as follows:

Table 1. Landslide parameters and analysis techniques
Data type Parameter Scale Sources Analysis technique Data type

Topography

Elevation

30 meters

FABDEM (University of Bristol), 2022 Surface analysis Secondary data

Slope FABDEM (University of Bristol), 2022 Surface analysis Secondary data

Aspect FABDEM (University of Bristol), 2022 Surface analysis Secondary data

Plan curvature FABDEM (University of Bristol), 2022 Surface analysis Secondary data

Profile curvature FABDEM (University of Bristol), 2022 Surface analysis Secondary data

Hydrology

Stream power 
index (SPI)

30 meters
FABDEM (University of Bristol), 2022 Surface analysis Secondary data

Terrain wetness 
index (TWI) FABDEM (University of Bristol), 2022 Surface analysis Secondary data

Distance from 
river 1:50.000 Topographic Map of Indonesia, BIG 

2018
Distance of 
Euclidean Secondary data

Geology

Lithology 1:50.000 Interpretive Geological Map, 
Geological Agency 2010 - Secondary data

Distance from 
fault 1:100.000 Geological Map, Geological Agency 

2009
Distance of 
Euclidean Secondary data

Landform 1:50.000 Land System, BIG 2022 - Secondary data

Human

Distance from 
road 1:50.000 Topographic Map of Indonesia, BIG 

2018
Distance of 
Euclidean Secondary data

Land use 1:50.000 Topographic Map of Indonesia, BIG 
2018 - Secondary data

Climate Pecipitation - Precipitation, BMKG, One Map Policy - Secondary data

Soil Soil type 1:50.000 Soil Map, Center for Agricultural Land 
Resources 2018 - Secondary data

Landslide 
event

Point of landslide 
event -

Spot 6 Satellite Imagery acquired in 
2020, and image collection from Esri 
Wayback in the form of WorldView-3 
imagery acquired in 2024 and survey

Object 
interpretation and 

segmentation

Secondary and 
primary data
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where:	Wji
+ – the likelihood ratio for landslide 

occurrence when the factor Fji is present; 
Wji

– – the likelihood ratio for landslide 
occurrence when the factor Fji is present. 
Correlation: positive – Wji

+ is positive and 
Wji

– is negative; negative – Wji
+ is negative 

and Wji
– is positive. No correlation if Wji

+ 
= Wji

– = 0. Weight contrast – to measure 
the contrast between the triggering factors 
and landslide occurrence, the following 
formula was used:
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Logistic regression methods 

Logistic regression (LR) is a multivariate 
statistical analysis used to correlate landslide 
occurrences with various triggering conditions 
simultaneously. This method analyzes the dis-
tribution of landslide occurrences in relation 
to triggering factors to determine the impact of 
each element on the likelihood of a landslide 
occurring. Landslide analysis using LR can ex-
amine the complex relationship between vari-
ous triggering factors and landslide occurrences. 
This method examines the distribution of land-
slide events in relation to the triggering factors 
to determine the impact of each element on the 
likelihood of landslide occurrence. In landslide 
analysis, LR surpasses mere correlation by ex-
amining the intricate relationships among multi-
ple triggering factors and landslide occurrences. 
It measures the impact of each element on over-
all landslide susceptibility, enabling researchers 
to identify which variables are most critical in 
predicting landslide events. The approach calcu-
lates odds ratios of each component, illustrating 
how changes in that factor affect the likelihood 
of a landslide occurrence.

A primary advantage of LR in landslide re-
search is its ability to handle both continuous and 
categorical variables, making it suitable for ana-
lyzing various environmental and geological data. 
This versatility enables researchers to incorporate 
a wide range of parameters, such as slope angle, 
lithology, land use, rainfall intensity, and proximity 
to faults or roadways. Moreover, LR may generate 

probability maps that visually represent landslide 
susceptibility within a designated region, thereby 
providing essential resources for land-use planning 
and risk management. It is crucial to recognize that 
LR assumes a linear relationship between the inde-
pendent variables and the log-odds of the outcome. 
This condition may not always hold in intricate 
natural systems. The logistic regression model is 
represented by a logit equation as follows (South-
erland and Zhou, 2021):
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where:	P − probability of landslide occurrence, β0 
− intercept of the logistic regression mod-
el, βi − regression coefficient associated 
with the i-th landslide conditioning factor, 
Xi − value of the i-th conditioning factor, 
n − number of conditioning factors.

The regression coefficient (β) measures the 
degree to which each causal element affects 
landslide likelihood. A positive coefficient in-
dicates that an increase in the factor’s value is 
associated with a heightened risk of landslides, 
whereas a negative coefficient denotes a de-
crease in risk (Akbari et al. 2014). Logistic Re-
gression analysis enables a quantitative assess-
ment of the impact of each factor on landslide 
susceptibility, thereby acting as an essential tool 
for vulnerability mapping and disaster mitiga-
tion planning. The validation of the WoE and LR 
models enhances the credibility of the analysis 
(Rahman et al. 2020).

Receiver operating characteristics (ROC)

The area under the curve (AUC) serves as a 
specific metric for testing the accuracy of proba-
bility-based prediction models, particularly in an-
alyzing landslide susceptibility (Qiu et al., 2024). 
A good AUC value ranges from below 0.6 to 1, 
with values ​​closer to 1 indicating superior mod-
el predictive performance. Models with an AUC 
value greater than 0.9 are categorized as excellent, 
those between 0.8 and 0.9 are categorized as good, 
values ​​between 0.7 and 0.8 are categorized as fair, 
and values ​​below 0.7 indicate inadequate model 
performance (Yu et al., 2023). This evaluation was 
conducted to verify the reliability and accuracy 
of the model in mapping landslide susceptibility. 
Table 2 presents the AUC Index values.
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Figure 2 illustrates the methodological flow-
chart adopted in this study. The workflow consists 
of data acquisition and preprocessing, selection 
and classification of landslide conditioning fac-
tors, application of the WoE and LR models, and 
subsequent generation and validation of the land-
slide susceptibility map.

RESULTS AND DISCUSSION

Inventory and parameter selection influence 
the landslide historical distribution patterns

An inventory of landslide events in the Balease 
Watershed was performed by analyzing satellite 
images. This investigation utilized SPOT 6 imag-
ery and the ESRI Wayback image collection, in 
conjunction with WorldView-3 imagery (Lin et 
al., 2022). This research detected 1.832 instances 
of landslides from 2020 to 2024, indicating a high 
level of vulnerability to land mass movement. 

Figure 2 clearly illustrates the distribution of land-
slide events. These results underscore the impor-
tance of ongoing monitoring activities to support 
disaster risk mitigation efforts in the region. The 
examination of landslide events in the Balease 
Watershed provides significant insights into the 
region’s geomorphological processes. 

The spatial distribution of landslide events, 
as shown in Figure 3, reveals certain patterns 
and trends that are of significant relevance for 
future land-use planning and disaster mitigation 
strategies. This distribution pattern indicates 
that most landslide events occur in areas with 
steep slopes and land cover conditions that have 
undergone significant changes due to human ac-
tivity. This detailed data collection provides an 
important basis for understanding the character-
istics and spatial dynamics of landslide events 
in the Balease watershed. Through in-depth 
analysis of this data, key triggering factors can 
be identified, such as rainfall intensity, seismic 
vibrations, and land use changes. This infor-
mation can then be used in the development of 
more accurate prediction models to improve the 
effectiveness of early warning systems, thereby 
sustainably minimizing the risk and impact of 
landslides in the study area. This information 
can assist decision-makers in executing targeted 
slope stabilization actions and developing regu-
lations to govern activities in high-risk areas 
(Masruroh et al., 2023).

Table 2. AUC index value adopted by Yu et al. (2023)
AUC value Explanation

> 0.9 Very good

0.8–0.9 Good

0.7–0.8 Quite good

<0.6 Bad

Figure 2. Methodological flowchart
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Logistic regression 

The logistic regression analysis in this study 
was conducted using Python programming, 
which leveraged a variety of comprehensive tools 
and frameworks to facilitate machine learning 
and statistical analysis. This approach yielded an 
effective LR model for assessing factors influ-
encing landslide susceptibility in the study area. 
Twelve variables were used in the analysis to de-
termine their respective contributions to the level 
of susceptibility.

The results showed that the aspect parameter 
had a negative coefficient of –139.6557, while the 
slope had a positive coefficient of 123.5101 (Ta-
ble 3 and Figure 4). These findings align with pre-
vious research by Ayalew and Yamagishi (2005), 
which showed that positive coefficient values ​​
reflect increased landslide risk as the parameter 
value increases. These two variables were shown 
to have the most dominant influence on the mod-
el, with the aspect with a significant negative co-
efficient indicating that a particular topographic 
orientation can reduce landslide potential (Lee 
et al., 2002). Conversely, slope with a significant 
positive coefficient indicates that steeper slopes 
increase the likelihood of landslides. These find-
ings reinforce the important role of land morpho-
metric conditions in determining slope stability in 
the study area.

The results of this study reveal a complex re-
lationship between various environmental factors 
and the level of vulnerability to landslides. The 
negative coefficient value for the aspect param-
eter indicates that certain slope orientations can 
contribute to increased slope stability, possibly 
due to lower exposure to direct rainfall intensity 
and solar radiation. Conversely, the positive coef-
ficient value obtained for slope gradient is consis-
tent with the general understanding that steeper 
terrain has a higher tendency to landslides due to 
increased gravitational forces and decreased soil 
stability. The significant influence of these two 
parameters confirms the dominant role of aspect 
and slope in determining landslide vulnerability 
patterns in the study area, while also highlighting 
the importance of considering morphometric fac-
tors in mitigation efforts and land use planning in 
disaster-prone areas.

The results of the LR analysis, which include 
the coefficient values of the twelve triggering 
factors, are presented in Table 3 and visualised 
in Figure 4. This representation provides a com-
prehensive picture of the relative contribution of 
each factor to the level of landslide vulnerability 
in the research area, while also showing the re-
lationship between environmental conditions and 
the spatial pattern of identified landslide events. 
Slope gradient parameters, stream power index 

Figure 3. Landslide inventory (A), and factors causing landslides (B)



381

Ecological Engineering & Environmental Technology 2026, 27(2), 374–389

(SPI), proximity to road networks, rainfall pat-
terns, landforms, and lithological composition 
were identified as the main factors contributing to 
landslide occurrence in the study area. All these 
characteristics showed positive coefficient values, 
indicating a significant influence on increasing 
the probability of landslide occurrence. This find-
ing is consistent with the results of research by 
Ayalew and Yamagishi (2005), which confirmed 
that the combination of morphometric, hydrologi-
cal, and geological conditions plays a significant 
role in controlling slope stability and the poten-
tial for land mass movement. The positive cor-
relation among these factors and landslide occur-
rences suggests that regions with steeper slopes, 
elevated flow power indices, proximity to roads, 

Table 3. Logistic regression (LR) value calculation 
results

Parameter Coefficient

Aspect -139.6557

Terrain wetness index (TWI) -29.0746

Soil type -0.644

Elevation -0.6221

Plan curvature -0.1124

Profil curvature -0.0028

Lithology 0.1427

Landform 0.2748

Precipitation 1.8351

Distance from road 4.0303

Sream power indeks (SPI) 44.8582

Slope 123.5101

Figure 4. Landslide hazard map using logistic regression method
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increased rainfall, specific landform characteris-
tics, and particular lithological compositions are 
more susceptible to landslides.

Weight of evidence 

The Weight of Evidence analysis was con-
ducted using the Python programming language, 
which allows for systematic and efficient appli-
cation of the method to identify the relationship 
between the distribution of landslide events and 
the environmental factors that influence them. 
The analysis results indicate that the spatial pat-
tern of landslide point distribution has a substan-
tial influence on the effectiveness of the WoE 
model in mapping vulnerability levels. This find-
ing aligns with the statement by Bhandari et al. 
(2024), who emphasised that landslide location 
distribution is a key component in risk analysis 
and spatial modelling of landslide disasters. The 
results shown in Table 4 and Figure 3 indicate 
that the WoE analysis conducted using Python is 
an effective method for assessing landslide sus-
ceptibility. The distribution pattern of landslide 
locations has a significant impact on the accura-
cy and reliability of risk analysis outcomes. The 
weight of evidence methodology is used to quan-
tify the spatial relationship between landslide 
occurrences and the various predisposing factors 
that influence them. This approach allows for a 
deeper understanding of the level of landslide 
vulnerability in an area by assessing the extent to 
which each factor contributes to the likelihood of 
landslide movement.

Parameters with positive 𝑊⁺ and negative 
𝑊⁻ values significantly influence landslide oc-
currence, indicating that these parameter classes 
increase the likelihood of such events. In contrast, 
when 𝑊⁺ values are negative and 𝑊⁻ values are 
positive, the related parameters are considered 
to be of lesser significance or possibly inversely 
correlated with landslide susceptibility. This re-
lationship supports the findings of Kusmajaya 
et al. (2022), which demonstrated that the WoE 
approach effectively quantifies the relationship 
between environmental variables and landslide 
risk levels. The differences in W⁺ and W⁻ values ​​
provide a deeper understanding of how certain 
predisposing factors can contribute to or hinder 
slope instability, depending on the underlying 
geomorphological conditions.

The analysis results indicate that parameter 
classes with low predictive weight values, such 

as elevations below 600 m and slopes less than 
2°, describe relatively stable terrain conditions. 
These areas generally have low gravitational 
pressure and limited surface runoff accumula-
tion, thus minimizing the probability of landslide 
occurrence. Conversely, parameter classes with 
higher positive weights, particularly in the slope 
range of 24°–33° and elevations of 900–1200 m, 
showed a stronger correlation with the identified 
landslide locations. This condition confirms that 
the combination of steep slopes and medium ele-
vations is a major factor contributing to increased 
slope vulnerability in the study area. Such con-
ditions are generally associated with steeper to-
pographies, heightened gravitational potential 
energy, and enhanced weathering processes that 
undermine soil cohesion and slope stability. The 
quantitative assessment presented in Table 4 and 
the spatial distribution patterns visualized in Fig-
ure 5 clearly illustrate how variations in the WoE 
values ​​can be used to identify the terrain factors 
most influential in landslide occurrence. This in-
formation played a crucial role in improving the 
accuracy of vulnerability mapping and serves as a 
basis for prioritizing areas for land-use planning 
and implementing more effective disaster risk 
mitigation strategies.

Comparative method between the weight 	
of evidence and logistic regression 

The methods chosen for landslide suscepti-
bility mapping were determined through a com-
parative analysis of the AUC values obtained 
from two statistical models: WoE and LR. The 
AUC value is used as the primary metric for as-
sessing model performance, as it indicates the 
model’s ability to distinguish between areas 
prone to and not prone to landslides (Figure 6). 
An AUC value close to 1.0 indicates excellent 
model performance with a high level of predic-
tive accuracy, while a value close to 0.5 indi-
cates classification ability equivalent to random 
chance, thus reflecting low model reliability. The 
model with the highest AUC value was identified 
as the most suitable for defining the spatial prob-
ability of landslide occurrence in the study area.

Figure 6 shows that both modelling ap-
proaches demonstrated excellent predictive abil-
ity; however, one method produced a higher 
AUC value, indicating superior model efficacy 
and accuracy. The difference in AUC values ​​be-
tween the WoE and LR models reflects variations 
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Table 4. Weight of evidence value calculation results
Parameter Class Explanation Pixel Landslide W+ W- WoE

Elevation

1 600 1,159,049 439 -2 0.794 -2.679
2 900 193,031 2,168.00 1.399 -0.392 1.907
3 1200 213,502 2,075.00 1.253 -0.354 1.722
4 >1200 425,475 884 -0.297 0.068 -0.25

Slope

1 2 684,396 - -8.626 0.425 -9.237
2 5 55,739 - -8.626 0.029 -8.841
3 8 13,358 - -8.626 0.007 -8.819
4 17 294,369 274 -1.103 0.11 -1.401
5 24 309,296 1,194.00 0.322 -0.073 0.207
6 33 500,266 3,235.00 0.84 -0.583 1.237
7 >33 125,754 853 0.888 -0.101 0.803

Aspect

1 Flat 384,501 - -8.626 0.216 -8.878
2 North 146,763 671 0.491 -0.052 0.507
3 Northeast 151,843 975 0.833 -0.114 0.91
4 East 176,78 920 0.622 -0.088 0.673
5 Southeast 248,439 1,450.00 0.737 -0.169 0.87
6 South 293,46 1,056.00 0.251 -0.051 0.266
7 Southwest 242,005 318 -0.758 0.071 -0.866
8 West 191,635 62 -2.16 0.091 -2.287
9 Northwest 147,752 104 -1.383 0.059 -1.478

Terrain 
wetness 

indeks (TWI)

1 5 395,996 1,815.00 0.494 -0.173 0.509
2 10 1,022,350 3,506.00 0.203 -0.273 0.318
3 15 542,167 234 -1.872 0.277 -2.307
4 20 20,021 1 -4.02 0.01 -4.188
5 >20 2,644 - -8.626 0.001 -8.785

Sream power 
indeks (SPI)

1 1 902,97 919 -1.014 0.428 -2.065
2 5 86,971 1 -5.456 0.045 -6.123
3 10 72,72 49 -1.427 0.029 -2.078
4 >10 920,517 4,587.00 0.578 -1.124 1.08

Plan 
curvature

1 Concave 532,283 2,866.00 0.658 -0.413 0.96
2 Flat 657,277 342 -1.683 0.338 -2.132
3 Convex 801,497 2,358.00 0.051 -0.036 -0.024

Profil 
curvature

1 Convex 565,938 2,173.00 0.318 -0.161 0.358
2 Flat 572,854 337 -1.56 0.278 -1.959
3 Concave 852,265 3,056.00 0.25 -0.238 0.366

Distance from 
road

1 100 245,225 2 -5.78 0.131 -10.778
2 200 157,53 - -8.627 0.083 -13.576
3 300 132,149 - -8.627 0.069 -13.562
4 400 83,123 2 -4.737 0.042 -9.646
5 500 67,455 6 -3.445 0.033 -8.344
6 >500 1,305,575 5,556.00 0.422 -5.225 0.78

Landform

1 Bar (deposits of sand 
or gravel in rivers) 501 - -8.627 - -16.783

2 Alluvial plain 418,519 - -8.627 0.237 -17.019
3 Small hilly plain 193,583 - -8.627 0.103 -16.885
4 Wavy plains 7,022 - -8.627 0.004 -16.786
5 Plain 39,419 - -8.627 0.02 -16.803
6 Delta 1,893 - -8.627 0.001 -16.784
7 slope 1,118,713 5,566.00 0.579 -8.627 1.051
8 Upper slope 21,442 - -8.627 0.011 -16.794
9 lower slope 1,922 - -8.627 0.001 -16.784
10 Gentle slope 83,135 - -8.627 0.043 -16.826
11 Middle slope 4,724 - -8.627 0.002 -16.785
12 Hilltop 5,544 - -8.627 0.003 -16.786
13 Tidal swamp 60,149 - -8.627 0.031 -16.814
14 Highland side 15,131 - -8.627 0.008 -16.79
15 River 19,36 - -8.627 0.01 -16.793
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Parameter Class Explanation Pixel Landslide W+ W- WoE

Soil type

1 Endoaquepts 445,674 - -8.627 0.254 -13.97
2 Endoaquents 9,518 - -8.627 0.005 -13.721
3 Dystrudepts 1,111,497 5,557.00 0.583 -          5.565 1.06
4 Eutrodox 155,857 8 -3.991 0.08 -9.16
5 Eutrudepts 65,409 - -8.627 0.033 -13.75
6 Fluvaquents 82,995 1 -5.409 0.043 -10.54
7 Hapludox 52,305 - -8.627 0.027 -13.743
8 Hapludults 12,9 - -8.627 0.007 -13.723
9 Sulfaquents 52,534 - -8.627 0.027 -13.743
10 Udipsamments 2,368 - -8.627 0.001 -13.717

Lithology

1 Alluvium 670,027 - -8.627 0.412 -12.208
2 Endapan Danau 48,821 - -8.627 0.025 -11.821
3 Formasi Bongka 96,449 - -8.627 0.05 -11.846
4 Formasi Larona 44,711 6 -3.036 0.022 -6.226
5 Kambuno granite 611,239 5,492.00 1.174 -          3.947 1.952
6 Pompangeo complex 358,915 46 -3.081 0.191 -6.442
7 Latimojong formation 114,652 22 -2.679 0.055 -5.904
8 Ultramafic complex 46,243 - -8.627 0.024 -11.82

Precipitation

1 3000 117,667 25 -3.809 0.056 -3.838
2 3200 737,764 355 -1.761 0.398 -2.146
3 3500 1,086,356 2,617.00 -0.149 0.154 -0.29
4 >3500 49,27 2,569.00 2.977 -0.595 3.585

Figure 5. Landslide hazard map using WOE method



385

Ecological Engineering & Environmental Technology 2026, 27(2), 374–389

in their respective methodological approaches, 
particularly in how they measure and interpret 
the relationship between conditioning factors 
and landslide occurrence in the study area. This 
comparison provides a quantitative basis for se-
lecting the most suitable modelling approach for 
the Balease watershed, ensuring that the chosen 
method accurately reflects the spatial variability 
of landslide susceptibility affected by geological, 
geomorphological, and climatic factors.

This study was convinced that landslide oc-
currence was strongly controlled by topographic 
and hydrometeorological factors, particularly 
slope gradient, elevation, and rainfall-related 
variables. Waiyasusri et al. (2023) reported that 
steep slopes combined with high rainfall inten-
sity significantly increased landslide probabil-
ity, which was related to the annual mean of 
precipitation, slope gradient, elevation, and SPI 
as the dominant controlling factors. However, 
the LR-based susceptibility modeling demon-
strated that WoE identified substantially larger 
high-susceptibility zones, highlighting localized 
hazard concentrations that LR tended to under-
represent. In line with the findings of Waiyas-
usri and Wetchayont (2025), revealed that the 
LR method resulting conservative and statisti-
cally robust susceptibility maps by integrating 
multiple controlling factors simultaneously. The 
LR method classified a larger area as low sus-
ceptibility because it only identified high-risk 
zones where rainfall, slope gradient, elevation, 
and hydrological effects jointly exerted a strong 
influence. Therefore, the LR method is appropri-
ate for regional-scale landslide assessment and 
long-term spatial planning, although it may un-
derestimate localized high-risk areas compared 
to the WoE method.

Inventory and selection of parameters that 
influence the historical distribution pattern 	
of landslides

This study examines the factors contributing 
to the occurrence of landslides in the study area, 
utilising the AUC value as a basis for evaluat-
ing the relative importance and predictive ability 
of each conditioning parameter that influences 
landslide occurrences. The AUC value provides 
a quantitative assessment of the capacity of each 
factor to differentiate between landslide and non-
landslide regions. Parameters with AUC values ​​
below 0.7 are categorized as less effective in 
predicting the spatial distribution of inventoried 
landslide points. This value indicates that the 
parameter’s contribution to model accuracy is 
relatively low and has the potential to cause un-
certainty in the analysis results. Parameters with 
an AUC value exceeding 0.7 demonstrate strong 
predictive power, suggesting that these variables 
significantly influence landslide susceptibility and 
effectively represent spatial variations in slope in-
stability (Ado et al., 2022). Figure 2 displays the 
evaluation results for each parameter, sorted by 
the highest AUC values. This accuracy assess-
ment plays a crucial role in identifying the most 
significant parameters influencing the historical 
distribution of landslide events, as explained by 
Reichenbach et al. (2018). They emphasized that 
AUC-based quantitative evaluation can enhance 
the understanding of the relative contributions 
of each conditioning factor in landslide suscep-
tibility modeling. Parameters highlighted in red 
exhibit an AUC value below 0.7, signifying in-
adequate predictive accuracy, while those with 
an AUC value exceeding 0.7 are deemed reliable 
and pertinent for subsequent analyses.

Figure 6. AUC accuracy test
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Evaluating the AUC value of each factor was 
essential for optimising and validating the model. 
The analysis identified the most influential pa-
rameters, ensuring that only variables with high 
discriminative performance were included in the 
landslide susceptibility model. This process con-
tributes to reducing data redundancy, increasing 
model efficiency, and improving the overall ac-
curacy of the susceptibility map. High-perform-
ing parameters typically include slope gradient, 
lithology, land use, and rainfall intensity, as these 
factors directly influence soil shear strength, wa-
ter infiltration rates, and slope surface stability. 
Therefore, parameter selection based on AUC 
thresholds not only enhances the reliability of the 
statistical model but also provides a robust scien-
tific framework for understanding the key environ-
mental factors that influence landslide occurrence 
in the study area. Analysis of the AUC values ​​ob-
tained from the WoE and LR methods provides 
an objective basis for determining the most ap-
propriate approach for modeling geomorphologi-
cal and environmental attributes in the study area. 
The WoE method, as a bivariate statistical tool, 
independently evaluates the relationship between 
each conditioning factor and landslide occur-
rence, demonstrating high effectiveness in areas 
with distinctive factor interrelationship patterns. 
In contrast, the multivariate LR method consid-
ers the cumulative influence of multiple param-
eters simultaneously, thus enabling the analysis 
of complex interactions between variables. The 
comparison of these two approaches reveals that 

the strategy with the higher AUC value, confirm-
ing the statistical validity of the resulting suscep-
tibility map and its ability to represent the spatial 
dynamics of landslide processes in the study area.

The weight of evidence and logistic regres-
sion techniques were used to classify landslide 
vulnerability into three categories: low, medium, 
and high (Table 5). The analysis results showed 
that the AUC value for the WoE method reached 
0.88, indicating excellent predictive performance. 
In contrast, the LR method yielded an AUC value 
of 0.77, indicating moderate predictive ability, as 
illustrated in Figure 5. These validation results 
confirm that the WoE method has a higher level 
of accuracy compared to LR, thus being consid-
ered more effective in mapping landslide vulner-
ability in the study area, supporting the conclu-
sions of Bhandari et al. (2024), which assert that 
the WoE method is the most accurate technique 
for predicting landslide susceptibility, especially 
in the Siwalik Hills of Nepal. Kusmajaya et al. 
(2022) argue that combining the WoE and LR ap-
proaches can enhance the precision and effective-
ness of landslide hazard mapping by considering 
the spatial distribution of landslide events. The 
integration of the WoE and LR approaches offers 
a viable approach to enhance the predictive ac-
curacy of landslide risk evaluations.

The logistic regression method classified a 
much larger proportion of the study area as low 
susceptibility (99,932.95 ha), followed by mod-
erate susceptibility (70,643.76 ha), with only 
7,780.50 ha categorized as high susceptibility. In 

Table 5. Comparison of landslide susceptibility area (ha) classified using logistic regression and weight of evidence 
methods across sub-districts of North Luwu

Sub-district boundary
Logistic regression method Weight of evidence method

Low Moderate High Total (ha) Low Moderate High Total (ha)

Baebunta 8.291,36 4.153,49 480,51 12.925,36 6.752,46 2.732,91 3.439,98 12.925,36

Baebunta Selatan 469,88 - - 469,88 469,88 - - 469,88

Bone Bone 5.733,86 602,97 43,83 6.380,66 5.539,21 832,73 8,72 6.380,66

Malangke 19.806,80 - - 19.806,80 19.806,71 - - 19.806,71

Malangke Barat 90,69 - - 90,69 90,69 - - 90,69

Mappedeceng 15.489,47 10.617,78 1.092,77 27.200,02 13.239,20 13.919,32 41,49 27.200,02

Masamba 25.608,27 44.192,53 5.257,29 75.058,08 12.061,43 32.607,13 30.389,53 75.058,08

Rampi 4.123,98 4.410,49 690,00 9.224,47 2.276,93 6.857,66 89,87 9.224,47

Sabbang 65,86 - - 65,86 65,86 - - 65,86

Sukamaju 13.622,25 6.010,37 203,50 19.836,12 12.277,56 7.455,06 103,50 19.836,12

Sukamaju Selatan 6.475,18 - - 6.475,18 6.475,18 - - 6.475,18

Tana Lili 155,36 656,14 12,60 824,09 - 823,46 0,64 824,18

Total 99.932,95 70.643,76 7.780,50 178.357,21 79.055,12 65.228,27 34.073,73 178.357,21
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contrast, the WoE method assigned a smaller area 
to low susceptibility (79,055.12 ha) and a compa-
rable area to moderate susceptibility (65,228.27 
ha) but identified a substantially larger high-sus-
ceptibility area of 34,073.73 ha, which was more 
than four times that of the LR result.

At the sub-district scale, this contrast was 
particularly evident in Masamba, where WoE de-
lineated 30,389.53 ha as high susceptibility com-
pared to only 5,257.29 ha under LR, indicating 
that WoE was more sensitive in capturing high-
risk zones in this area. Similar patterns were ob-
served in Baebunta and Rampi, where WoE con-
sistently allocated larger areas to the high-suscep-
tibility class than LR. Conversely, in sub-districts 
such as Malangke, Malangke Barat, Baebunta 
Selatan, Sabbang, and Sukamaju Selatan, both 
methods predominantly classified the area as low 
susceptibility, suggesting agreement in relatively 
stable zones.

Approximately 1.832 landslide occurrences 
during the 2020–2024 period are consistent with 
previous landslide susceptibility studies in tropi-
cal and mountainous regions of Indonesia. The 
contrasting spatial patterns produced by the LR 
and WoE methods align with findings reported 
in earlier research, where LR typically classified 
larger areas as low susceptibility due to its conser-
vative, probability-based modeling framework, 
while WoE delineated broader high-susceptibility 
zones by emphasizing strong spatial associations 
between landslide events and conditioning factor 
classes (Dimyati et al., 2022; Shitov et al., 2022; 
Shitov et al., 2025). In summary, LR tended to 
produce a more conservative susceptibility map 
by concentrating most areas into low and moder-
ate classes, whereas WoE provided a more precau-
tionary assessment by identifying broader high-
susceptibility zones. This difference highlighted 
the importance of method selection in landslide 
hazard assessment, as WoE appeared to be more 
suitable for risk-averse planning and mitigation, 
while LR was preferable for more generalized re-
gional assessments.

CONCLUSIONS

Twelve of the fifteen parameters evaluated 
had area under the curve (AUC) values over 0.7, 
including the final analysis. The results showed 
approximately 1.832 landslide locations during 
the 2020–2024 period. Furthermore, the WoE 

method outperformed the LR model, with AUC 
values of 0.88 and 0.77, respectively. These re-
sults indicated that the WoE method provided 
more accurate landslide risk predictions in the 
Balease watershed with superior performance 
compared to the LR method. The WoE approach 
is recommended as a more effective technique 
for landslide susceptibility mapping in this study 
area. These findings confirm the relevance of the 
bivariate statistical approach in analyzing the re-
lationship between conditioning factors and land-
slide occurrence, especially in areas with com-
plex geomorphological characteristics.
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