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ABSTRACT

North Luwu Regency exhibits a high susceptibility to landslides; ten major landslides in South Sulawesi occurred
in the Balease watershed of North Luwu Regency over a ten-year period. We aimed to inventory landslide oc-
currences, identify the controlling factors of landslides, generate landslide hazard maps, and determine the most
reliable method for landslide susceptibility modeling in the Balease watershed. Spatial statistical analyses using
the weight of evidence (WoE) and logistic regression (LR) models were performed. Landslide inventory mapping
was conducted through visual interpretation of SPOT-6 satellite imagery (2020) and WorldView-3 imagery (2024).
The parameters included topographic, hydrological, geological, climatic, soil, and anthropogenic factors. Model
validation was performed using the area under the curve (AUC) approach. The results indicate that approximately
1.832 mapped landslide locations occurred during 2020-2024. Notable differences in area coverage between the
LR and WoE methods across landslide susceptibility classes, particularly, the LR classified a larger proportion of
the study area as low susceptibility (99,932.95 ha) compared to WoE (79,055.12 ha). In contrast, WoE allocated
a substantially larger area to the high susceptibility class (34,073.73 ha) than LR (7,780.50 ha), indicating that
WOE is more sensitive in identifying areas with a higher likelihood of landslide occurrence. The prominent factors
controlling landslide occurrence in Balease watershed were rainfall with 0.91 AUC value, slope gradient (0.89),
elevation (0.86), and stream power index (SPI) (0.85). The WoE model achieved an AUC value of 0.88, classi-
fied as good, while the LR model yielded an AUC value of 0.77, classified as fair. The study’s finding, the WoE
of the evidence model driven mainly by rainfall and topographic factors, provides the most accurate landslide
susceptibility assessment for the Balease watershed, supporting effective disaster mitigation and spatial planning.
The resulting landslide hazard maps are expected to support spatial planning, disaster mitigation strategies, and
conservation planning in landslide-prone areas of North Luwu Regency.
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INTRODUCTION et al., 2025). Therefore, increased disaster man-
agement preparedness is essential to mitigate

Indonesia’s extreme topography, coupled with  the impact of disasters (Khalil et al., 2020). In
climate change, urbanization, and environmental the area of South Sulawesi, particularly in North
degradation, has led to increased landslide activ- Luwu Regency, landslides are frequently report-
ity, resulting in loss of life and property (Tirsyayu ed. North Luwu Regency is characterized by steep
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terrain, complex geological structures, and a trop-
ical climate with intense and prolonged tropical
rainfall throughout the year, which increases soil
moisture, reduces slope stability, and all of which
contribute to high landslide susceptibility (Zul-
fahmi et al., 2025). The landslide in North Luwu
occurred as a result of excessive rainfall (3.822
mm/year), a wide slope area, and land conversion,
which reduced the soil’s ability to retain water and
caused mass shifts during heavy rain (Thamsi et
al., 2019). Due to its lack of vegetation to reduce
erosion and steep slopes, North Luwu Regency is
particularly vulnerable to landslides (Pazzi et al.,
2019). Moreover, rapid land use changes and the
expansion of settlements into hillside areas have
further increased landslide risk, leading to great-
er potential damage to infrastructure (Fell et al.,
2008). A total of 116 landslides occurred in South
Sulawesi during 2014-2023, causing 15,601 fa-
talities, and ten major disasters were recorded in
North Luwu (BNPB, 2024). These disasters are
often intensified by secondary risks such as flash
flooding, which results in more severe damage
and increased numbers of fatalities.

Spatially identifying high-risk zones, such as
through landslide susceptibility mapping, is a non-
structural mitigation solution that offers an objec-
tive spatial basis for spatial planning, identifying
secure zones, infrastructure development, and ex-
panding early warning systems to reduce landslide
risks (Xiong et al., 2017). The identification of a
vulnerable landslide area aimed to mitigate or pre-
vent landslide risks (Ahmad et al., 2023). Recent
disaster events, like the flash floods and debris
flows in 2020 caused by landslides in Masamba
Sub-districts, which resulted in significant infra-
structure damage and substantial financial loss,
highlighting the significance of improved landslide
susceptibility mapping in North Luwu. Recent di-
sasters, such as the flash floods and debris flows in
2020 caused by landslides in Masamba Sub-dis-
tricts, which resulted in significant infrastructure
damage and substantial financial loss, highlight
the significance of improved landslide susceptibil-
ity mapping in North Luwu (Ma’mur et al., 2024).
In addition, different modeling approaches used
in Indonesia, including statistical and machine-
learning methods, offer varying strengths to iden-
tify the most reliable method for specific regions
(Melati et al., 2024). High-accuracy susceptibility
maps derived from such approaches are essential
for supporting hazard mitigation, spatial planning,

and community protection in landslide-prone ar-
eas of Indonesia.

Weight of evidence and LR are two statis-
tical methods commonly used in landslide sus-
ceptibility mapping. These methods can iden-
tify relationships betwen environmental factors
and landslide occurrences (Batar and Watanabe,
2021; Hong et al., 2017). LR models the com-
bined influence of multiple variables (Misbahu-
din, 2020) and demonstrates high predictive ac-
curacy for landslide occurrences (Matka, 2021).
LR method was applied within a GIS framework
to relate historical landslide occurrence records
with multiple environmental and conditioning
factors, estimate the statistical influence of each
factor on landslide probability, and produce vali-
dated landslide susceptibility maps by converting
the LR-derived probabilities into spatial hazard
zones (Waiyasusri et al., 2023, 2025; Waiyasusri
and Wetchayont, 2025).

Recent advances in landslide susceptibil-
ity mapping have introduced various statistical
methods to improve prediction accuracy. Al-
though landslide susceptibility mapping using
machine learning approaches has not been widely
applied in Indonesia, watershed-scale studies in
North Luwu remain limited. Moreover, few stud-
ies have systematically compared different land-
slide susceptibility mapping methods, such as LR
and WOE, using the same dataset within this re-
gion (e.g., Nwazelibe et al., 2023; Polykretis and
Chalkias, 2018; Xie et al., 2017). Therefore, we
hypothesize that (1) landslide occurrences in the
Balease watershed are influenced by topographi-
cal, hydrological, geological, climatic, soil, and
human activity factors; (2) landslide susceptibil-
ity in the Balease watershed can be predicted us-
ing spatial statistical methods based on the rela-
tionship between landslide occurrences and their
conditioning factors; (3) higher predictive accu-
racy in landslide hazard mapping is expected to
be achieved using the WoE method compared to
the LR method. We aimed to assess the landslide
susceptibility area using the WoE and LR method
based on selected conditioning factors. The ob-
jectives of this were to (1) inventory landslide
occurrence locations based on satellite imagery
data; (2) identify and determine the factors con-
tributing to landslide occurrence; (3) produce a
landslide susceptibility map using the WoE meth-
od and the LR method and determine the most
accurate method between the two. The outputs of
this study include a validated landslide inventory
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map, thematic conditioning factor maps, landslide
susceptibility maps generated using the WoE and
LR methods, and a comparative accuracy assess-
ment to identify the best-performing method in
North Luwu Regency

MATERIAL AND METHODS

Research area

This study was conducted in the Balease Wa-
tershed (DAS Balease), North Luwu Regency,
South Sulawesi, Indonesia (approximately 2°30'—
2°55' S and 120°20"-120°40" E), covering an area
of about 1.000 km? (Figure 1). The Balease water-
shed consists of lowland areas in the downstream
region and steep mountainous terrain in the up-
stream zone, with elevations generally increasing
toward the headwaters. The Balease River repre-
sents the main river system, supported by several
tributaries that form the watershed drainage net-
work. Geologically, the area is dominated by vol-
canic and sedimentary formations with varying
degrees of weathering and structural complexity,
including the presence of the Kambuno Granite.
The elevation zone of 900-1.200 m above sea
level represents a prominent topographic unit
within the watershed. The study period spanned

from January 2004 to December 2025. The land-
slide conditioning factors used in this study, along
with their data sources and applied spatial analy-
sis techniques, were represented in Table 1.

Inventory of landslide events

An extensive catalog of landslide occurrences
was created to record the spatial distribution of
landslides throughout the research region. This
inventory was created using high-resolution sat-
ellite images and on-screen digitization meth-
ods with ArcGIS software (version 10.8.2; ESRI
2021). To improve the accuracy and reliability of
the susceptibility analysis, the landslide inventory
data were methodically partitioned into two sub-
sets: 70% of the identified landslide points were
assigned for model training and parameter opti-
mization. In contrast, the remaining 30% were
reserved for model validation.

Weight of evidence method

The weight of evidence method is a rigorous
statistical approach utilized to evaluate the cor-
relation between environmental variables and
landslide events. This method, based on Bayes’
theorem, integrates information from several
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Figure 1. Research location in Balease watershed, North Luwu Regency, South Sulawesi, Indonesia
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Table 1. Landslide parameters and analysis techniques

Data type Parameter Scale Sources Analysis technique Data type
Elevation FABDEM (University of Bristol), 2022 Surface analysis | Secondary data
Slope FABDEM (University of Bristol), 2022 Surface analysis | Secondary data
Topography Aspect 30 meters | FABDEM (University of Bristol), 2022 Surface analysis | Secondary data
Plan curvature FABDEM (University of Bristol), 2022 Surface analysis | Secondary data
Profile curvature FABDEM (University of Bristol), 2022 Surface analysis | Secondary data
S?;ZZT (pso;\I/)e r FABDEM (University of Bristol), 2022 Surface analysis | Secondary data
Terrain wetness 30 meters
Hydrology . FABDEM (University of Bristol), 2022 Surface analysis | Secondary data
index (TWI)
D|star_1ce from 1:50.000 Topographic Map of Indonesia, BIG Dlsta_nce of Secondary data
river 2018 Euclidean
. ) Interpretive Geological Map, )
Lithology 1:50.000 Geological Agency 2010 Secondary data
Geology Distance from 1:100.000 Geological Map, Geological Agency Distance of Secondary data
fault U 2009 Euclidean y
Landform 1:50.000 Land System, BIG 2022 - Secondary data
Distance from 1:50.000 Topographic Map of Indonesia, BIG Dlsta_nce of Secondary data
road 2018 Euclidean
Human Topographic Map of Indonesia, BIG
Land use 1:50.000 pograp 2%18 ' - Secondary data
Climate Pecipitation - Precipitation, BMKG, One Map Policy - Secondary data
. . . Soil Map, Center for Agricultural Land
Soil Soil type 1:50.000 Resources 2018 Secondary data
Spot 6 Satellite Imagery acquired in Obiect
Landslide | Point of landslide 2020, and image collection from Esri | . & Secondary and
- ) ) interpretation and ;
event event Wayback in the form of WorldView-3 . primary data
. AN segmentation
imagery acquired in 2024 and survey

aspects to assess the likelihood of a landslide oc-
currence. The posterior probability indicates the
possibility of a landslide occurring after integrat-
ing additional knowledge from specific factors
(Bui et al., 2022). The conditional probability of a
landslide event, contingent upon the presence of
influencing factors, is expressed as follows: The
weight of evidence method is a robust statistical
technique that measures the impact of several
environmental variables on landslide incidence.
This technique utilizes Bayes’ theorem to enable
researchers to combine multiple data sources and
assess their collective impact on landslide prob-
ability. The posterior probability, a fundamental
concept in WoE, represents the revised likeli-
hood of a landslide occurrence after incorporat-
ing additional data from specific environmental
variables. This method enhances the comprehen-
sion of landslide vulnerability by considering the
intricate interactions among various geological,
topographical, and hydrological factors (Batar
and Watanabe, 2021).

The utilization of the WoE methodology in
landslide susceptibility mapping has numerous
benefits. It provides a systematic framework for
evaluating the relative importance of different

factors leading to landslide events. This technique
accepts both continuous and categorical data,
hence augmenting its adaptability in assessing
various environmental variables. Moreover, the
WOE methodology enables the creation of land-
slide susceptibility maps that are easily interpre-
table and applicable for decision-makers in land-
use planning and risk management. By measuring
the correlation between environmental variables
and landslide occurrences, WoE improves the
precision of forecasts concerning landslide-prone
regions. It facilitates the formulation of efficient
mitigation plans (Bui et al., 2022), utilizing
equations:

C ey ()
Wt =Ln (@) = (P{,;]{.i?é}) 1)
P{FﬁnL}
won) -G o

The conditional probability of the existence
of a landslide that does not present any factors
can be formulated as follows:
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PEjint}
W, =L (@> = —< i) (3)

Ji n P{L} _(P{iﬁr}\g})

where: W;* — the likelihood ratio for landslide
occurrence when the factor Fji is present;
W, — the likelihood ratio for landslide
occurrence when the factor F, is present.
Correlation: positive — W,* is positive and
W, is negative; negative — W, is negative
and W, is positive. No correlation if W,*
= W,~ = 0. Weight contrast — to measure
the contrast between the triggering factors
and landslide occurrence, the following
formula was used:

= Wi — Wi (4)

Weontrast ji

Logistic regression methods

Logistic regression (LR) is a multivariate
statistical analysis used to correlate landslide
occurrences with various triggering conditions
simultaneously. This method analyzes the dis-
tribution of landslide occurrences in relation
to triggering factors to determine the impact of
each element on the likelihood of a landslide
occurring. Landslide analysis using LR can ex-
amine the complex relationship between vari-
ous triggering factors and landslide occurrences.
This method examines the distribution of land-
slide events in relation to the triggering factors
to determine the impact of each element on the
likelihood of landslide occurrence. In landslide
analysis, LR surpasses mere correlation by ex-
amining the intricate relationships among multi-
ple triggering factors and landslide occurrences.
It measures the impact of each element on over-
all landslide susceptibility, enabling researchers
to identify which variables are most critical in
predicting landslide events. The approach calcu-
lates odds ratios of each component, illustrating
how changes in that factor affect the likelihood
of a landslide occurrence.

A primary advantage of LR in landslide re-
search is its ability to handle both continuous and
categorical variables, making it suitable for ana-
lyzing various environmental and geological data.
This versatility enables researchers to incorporate
a wide range of parameters, such as slope angle,
lithology, land use, rainfall intensity, and proximity
to faults or roadways. Moreover, LR may generate
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probability maps that visually represent landslide
susceptibility within a designated region, thereby
providing essential resources for land-use planning
and risk management. It is crucial to recognize that
LR assumes a linear relationship between the inde-
pendent variables and the log-odds of the outcome.
This condition may not always hold in intricate
natural systems. The logistic regression model is
represented by a logit equation as follows (South-
erland and Zhou, 2021):

In (1%) = fo + Xz Bi X ®)

where: P — probability of landslide occurrence, f;
— intercept of the logistic regression mod-
el, B, — regression coefficient associated
with the i-th landslide conditioning factor,
X, — value of the i-th conditioning factor,
n — number of conditioning factors.

The regression coefficient () measures the
degree to which each causal element affects
landslide likelihood. A positive coefficient in-
dicates that an increase in the factor’s value is
associated with a heightened risk of landslides,
whereas a negative coefficient denotes a de-
crease in risk (Akbari et al. 2014). Logistic Re-
gression analysis enables a quantitative assess-
ment of the impact of each factor on landslide
susceptibility, thereby acting as an essential tool
for vulnerability mapping and disaster mitiga-
tion planning. The validation of the WoE and LR
models enhances the credibility of the analysis
(Rahman et al. 2020).

Receiver operating characteristics (ROC)

The area under the curve (AUC) serves as a
specific metric for testing the accuracy of proba-
bility-based prediction models, particularly in an-
alyzing landslide susceptibility (Qiu et al., 2024).
A good AUC value ranges from below 0.6 to 1,
with values closer to 1 indicating superior mod-
el predictive performance. Models with an AUC
value greater than 0.9 are categorized as excellent,
those between 0.8 and 0.9 are categorized as good,
values between 0.7 and 0.8 are categorized as fair,
and values below 0.7 indicate inadequate model
performance (Yu et al., 2023). This evaluation was
conducted to verify the reliability and accuracy
of the model in mapping landslide susceptibility.
Table 2 presents the AUC Index values.
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Table 2. AUC index value adopted by Yu et al. (2023)

AUC value Explanation

>0.9 Very good
0.8-0.9 Good

0.7-0.8 Quite good
<0.6 Bad

Figure 2 illustrates the methodological flow-
chart adopted in this study. The workflow consists
of data acquisition and preprocessing, selection
and classification of landslide conditioning fac-
tors, application of the WoE and LR models, and
subsequent generation and validation of the land-
slide susceptibility map.

RESULTS AND DISCUSSION

Inventory and parameter selection influence
the landslide historical distribution patterns

An inventory of landslide events in the Balease
Watershed was performed by analyzing satellite
images. This investigation utilized SPOT 6 imag-
ery and the ESRI Wayback image collection, in
conjunction with WorldView-3 imagery (Lin et
al., 2022). This research detected 1.832 instances
of landslides from 2020 to 2024, indicating a high
level of vulnerability to land mass movement.

Figure 2 clearly illustrates the distribution of land-
slide events. These results underscore the impor-
tance of ongoing monitoring activities to support
disaster risk mitigation efforts in the region. The
examination of landslide events in the Balease
Watershed provides significant insights into the
region’s geomorphological processes.

The spatial distribution of landslide events,
as shown in Figure 3, reveals certain patterns
and trends that are of significant relevance for
future land-use planning and disaster mitigation
strategies. This distribution pattern indicates
that most landslide events occur in areas with
steep slopes and land cover conditions that have
undergone significant changes due to human ac-
tivity. This detailed data collection provides an
important basis for understanding the character-
istics and spatial dynamics of landslide events
in the Balease watershed. Through in-depth
analysis of this data, key triggering factors can
be identified, such as rainfall intensity, seismic
vibrations, and land use changes. This infor-
mation can then be used in the development of
more accurate prediction models to improve the
effectiveness of early warning systems, thereby
sustainably minimizing the risk and impact of
landslides in the study area. This information
can assist decision-makers in executing targeted
slope stabilization actions and developing regu-
lations to govern activities in high-risk areas
(Masruroh et al., 2023).

Data
Training Area
(70%)

Data
Validasi Area
(30%)

-

* Topographic factors: Elevation, Slope, Aspect, Plan Curvature, Profile Curvature

* Hydrological factors: Stream Power Index (SPI), Terrain Wetness Index (TWI), Distance

to Rivers
* Geological factors: Lithology, Distance to Faults, Landforms
« Climatic factor: RainfallSoil factor: Soil Type
* Anthropogenic factors: Land Use/Land Cover, Distance to Roads

* If the AUC (Area Under Curve) > 0.7

* Metode Weight Of Evidence (WoE)

I
i

* Metode Logistic Regresion (LR)

Landslide Susceptibility Map - Validasi AUC

Figure 2. Methodological flowchart
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Logistic regression

The logistic regression analysis in this study
was conducted using Python programming,
which leveraged a variety of comprehensive tools
and frameworks to facilitate machine learning
and statistical analysis. This approach yielded an
effective LR model for assessing factors influ-
encing landslide susceptibility in the study area.
Twelve variables were used in the analysis to de-
termine their respective contributions to the level
of susceptibility.

The results showed that the aspect parameter
had a negative coefficient of —139.6557, while the
slope had a positive coefficient of 123.5101 (Ta-
ble 3 and Figure 4). These findings align with pre-
vious research by Ayalew and Yamagishi (2005),
which showed that positive coefficient values
reflect increased landslide risk as the parameter
value increases. These two variables were shown
to have the most dominant influence on the mod-
el, with the aspect with a significant negative co-
efficient indicating that a particular topographic
orientation can reduce landslide potential (Lee
et al., 2002). Conversely, slope with a significant
positive coefficient indicates that steeper slopes
increase the likelihood of landslides. These find-
ings reinforce the important role of land morpho-
metric conditions in determining slope stability in
the study area.
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The results of this study reveal a complex re-
lationship between various environmental factors
and the level of vulnerability to landslides. The
negative coefficient value for the aspect param-
eter indicates that certain slope orientations can
contribute to increased slope stability, possibly
due to lower exposure to direct rainfall intensity
and solar radiation. Conversely, the positive coef-
ficient value obtained for slope gradient is consis-
tent with the general understanding that steeper
terrain has a higher tendency to landslides due to
increased gravitational forces and decreased soil
stability. The significant influence of these two
parameters confirms the dominant role of aspect
and slope in determining landslide vulnerability
patterns in the study area, while also highlighting
the importance of considering morphometric fac-
tors in mitigation efforts and land use planning in
disaster-prone areas.

The results of the LR analysis, which include
the coefficient values of the twelve triggering
factors, are presented in Table 3 and visualised
in Figure 4. This representation provides a com-
prehensive picture of the relative contribution of
each factor to the level of landslide vulnerability
in the research area, while also showing the re-
lationship between environmental conditions and
the spatial pattern of identified landslide events.
Slope gradient parameters, stream power index
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Table 3. Logistic regression (LR) value calculation
results

(SPI), proximity to road networks, rainfall pat-
terns, landforms, and lithological composition

Parameter Coefficient were identified as the main factors contributing to
Aspect 139.6557 landslide occurrence in the study area. All these
Terrain wetness index (TWI) 20.0746 characteristics showed positive coefficient values,
Soil type 0.644 indicating a significant influence on increasing
Elevation 0.6221 the probability of landslide occurrence. This find-
Plan curvature 01124 ing is consistent with the results of research by
Prof curvature 0.0028 e and yamagishi (2000), which confismed
Lithology 0.1427 attne com II’]E?. 10N 0 mqrp ometric, y I‘P ogl-
cal, and geological conditions plays a significant
Landform 0.2748 . . L
— role in controlling slope stability and the poten-
Precipitation 1.8351 . ..
— - 70303 tial for land mass movement. The positive cor-
Siance TTom roa : relation among these factors and landslide occur-
Sream power indeks (SP) 44.8582 rences suggests that regions with steeper slopes,
Slope 123.5101 elevated flow power indices, proximity to roads,
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Figure 4. Landslide hazard map using logistic regression method
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increased rainfall, specific landform characteris-
tics, and particular lithological compositions are
more susceptible to landslides.

Weight of evidence

The Weight of Evidence analysis was con-
ducted using the Python programming language,
which allows for systematic and efficient appli-
cation of the method to identify the relationship
between the distribution of landslide events and
the environmental factors that influence them.
The analysis results indicate that the spatial pat-
tern of landslide point distribution has a substan-
tial influence on the effectiveness of the WoE
model in mapping vulnerability levels. This find-
ing aligns with the statement by Bhandari et al.
(2024), who emphasised that landslide location
distribution is a key component in risk analysis
and spatial modelling of landslide disasters. The
results shown in Table 4 and Figure 3 indicate
that the WOE analysis conducted using Python is
an effective method for assessing landslide sus-
ceptibility. The distribution pattern of landslide
locations has a significant impact on the accura-
cy and reliability of risk analysis outcomes. The
weight of evidence methodology is used to quan-
tify the spatial relationship between landslide
occurrences and the various predisposing factors
that influence them. This approach allows for a
deeper understanding of the level of landslide
vulnerability in an area by assessing the extent to
which each factor contributes to the likelihood of
landslide movement.

Parameters with positive W* and negative
W~ values significantly influence landslide oc-
currence, indicating that these parameter classes
increase the likelihood of such events. In contrast,
when W values are negative and W~ values are
positive, the related parameters are considered
to be of lesser significance or possibly inversely
correlated with landslide susceptibility. This re-
lationship supports the findings of Kusmajaya
et al. (2022), which demonstrated that the WoE
approach effectively quantifies the relationship
between environmental variables and landslide
risk levels. The differences in W+ and W~ values
provide a deeper understanding of how certain
predisposing factors can contribute to or hinder
slope instability, depending on the underlying
geomorphological conditions.

The analysis results indicate that parameter
classes with low predictive weight values, such
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as elevations below 600 m and slopes less than
2°, describe relatively stable terrain conditions.
These areas generally have low gravitational
pressure and limited surface runoff accumula-
tion, thus minimizing the probability of landslide
occurrence. Conversely, parameter classes with
higher positive weights, particularly in the slope
range of 24°-33° and elevations of 900-1200 m,
showed a stronger correlation with the identified
landslide locations. This condition confirms that
the combination of steep slopes and medium ele-
vations is a major factor contributing to increased
slope vulnerability in the study area. Such con-
ditions are generally associated with steeper to-
pographies, heightened gravitational potential
energy, and enhanced weathering processes that
undermine soil cohesion and slope stability. The
guantitative assessment presented in Table 4 and
the spatial distribution patterns visualized in Fig-
ure 5 clearly illustrate how variations in the WoE
values can be used to identify the terrain factors
most influential in landslide occurrence. This in-
formation played a crucial role in improving the
accuracy of vulnerability mapping and serves as a
basis for prioritizing areas for land-use planning
and implementing more effective disaster risk
mitigation strategies.

Comparative method between the weight
of evidence and logistic regression

The methods chosen for landslide suscepti-
bility mapping were determined through a com-
parative analysis of the AUC values obtained
from two statistical models: WOE and LR. The
AUC value is used as the primary metric for as-
sessing model performance, as it indicates the
model’s ability to distinguish between areas
prone to and not prone to landslides (Figure 6).
An AUC value close to 1.0 indicates excellent
model performance with a high level of predic-
tive accuracy, while a value close to 0.5 indi-
cates classification ability equivalent to random
chance, thus reflecting low model reliability. The
model with the highest AUC value was identified
as the most suitable for defining the spatial prob-
ability of landslide occurrence in the study area.

Figure 6 shows that both modelling ap-
proaches demonstrated excellent predictive abil-
ity; however, one method produced a higher
AUC value, indicating superior model efficacy
and accuracy. The difference in AUC values be-
tween the WoE and LR models reflects variations
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Table 4. Weight of evidence value calculation results

Parameter | Class Explanation Pixel Landslide W+ W- WoE
1 600 1,159,049 439 2 0.794 -2.679
) 2 900 193,031 2,168.00 1.399 -0.392 1.907
Elevation
3 1200 213,502 2,075.00 1.253 -0.354 1.722
4 >1200 425,475 884 -0.297 0.068 -0.25
1 2 684,396 - -8.626 0.425 -9.237
2 5 55,739 - -8.626 0.029 -8.841
3 8 13,358 - -8.626 0.007 -8.819
Slope 4 17 294,369 274 -1.103 0.11 -1.401
5 24 309,296 1,194.00 0.322 -0.073 0.207
6 33 500,266 3,235.00 0.84 -0.583 1.237
7 >33 125,754 853 0.888 -0.101 0.803
1 Flat 384,501 - -8.626 0.216 -8.878
2 North 146,763 671 0.491 -0.052 0.507
3 Northeast 151,843 975 0.833 -0.114 0.91
4 East 176,78 920 0.622 -0.088 0.673
Aspect 5 Southeast 248,439 1,450.00 0.737 -0.169 0.87
6 South 293,46 1,056.00 0.251 -0.051 0.266
7 Southwest 242,005 318 -0.758 0.071 -0.866
8 West 191,635 62 -2.16 0.091 -2.287
9 Northwest 147,752 104 -1.383 0.059 -1.478
1 5 395,996 1,815.00 0.494 -0.173 0.509
Terrain 2 10 1,022,350 3,506.00 0.203 -0.273 0.318
wetness 3 15 542,167 234 -1.872 0.277 -2.307
indeks (TWI) | 4 20 20,021 1 -4.02 0.01 -4.188
5 >20 2,644 - -8.626 0.001 -8.785
1 1 902,97 919 -1.014 0.428 -2.065
Sream power | 2 5 86,971 1 -5.456 0.045 -6.123
indeks (SP1) 3 10 72,72 49 -1.427 0.029 -2.078
4 >10 920,517 4,587.00 0.578 -1.124 1.08
1 Concave 532,283 2,866.00 0.658 -0.413 0.96
Cufv':& o 2 Flat 657,277 342 -1.683 0.338 2132
3 Convex 801,497 2,358.00 0.051 -0.036 -0.024
_ 1 Convex 565,938 2,173.00 0.318 -0.161 0.358
cu':vrgtfﬂre 2 Flat 572,854 337 156 0.278 -1.959
3 Concave 852,265 3,056.00 0.25 -0.238 0.366
1 100 245,225 2 -5.78 0.131 -10.778
2 200 157,53 - -8.627 0.083 -13.576
Distance from 3 300 132,149 - -8.627 0.069 -13.562
road 4 400 83,123 2 -4.737 0.042 -9.646
5 500 67,455 6 -3.445 0.033 -8.344
6 >500 1,305,575 5,556.00 0.422 -5.225 0.78
I g:zsgls:fr?\fesg‘d 501 : -8.627 - -16.783
2 Alluvial plain 418,519 - -8.627 0.237 -17.019
3 Small hilly plain 193,583 - -8.627 0.103 -16.885
4 Wavy plains 7,022 - -8.627 0.004 -16.786
5 Plain 39,419 - -8.627 0.02 -16.803
6 Delta 1,893 - -8.627 0.001 -16.784
7 slope 1,118,713 5,566.00 0.579 -8.627 1.051
Landform 8 Upper slope 21,442 - -8.627 0.011 -16.794
9 lower slope 1,922 - -8.627 0.001 -16.784
10 Gentle slope 83,135 - -8.627 0.043 -16.826
11 Middle slope 4,724 - -8.627 0.002 -16.785
12 Hilltop 5,544 - -8.627 0.003 -16.786
13 Tidal swamp 60,149 - -8.627 0.031 -16.814
14 Highland side 15,131 - -8.627 0.008 -16.79
15 River 19,36 - -8.627 0.01 -16.793

383



Ecological Engineering & Environmental Technology 2026, 27(2), 374-389

384

T
120100

T
1200200

120°300°E

T
120°000°E

Figure 5. Landslide hazard map using WOE method

Parameter | Class Explanation Pixel Landslide W+ W- WoE
1 Endoaquepts 445,674 - -8.627 0.254 -13.97
2 Endoaquents 9,518 - -8.627 0.005 -13.721
3 Dystrudepts 1,111,497 5,5657.00 0.583 - 5.565 1.06
4 Eutrodox 155,857 8 -3.991 0.08 -9.16

Soil type 5 Eutrudepts 65,409 - -8.627 0.033 -13.75
6 Fluvaquents 82,995 1 -5.409 0.043 -10.54
7 Hapludox 52,305 - -8.627 0.027 -13.743
8 Hapludults 12,9 - -8.627 0.007 -13.723
9 Sulfaquents 52,534 - -8.627 0.027 -13.743
10 Udipsamments 2,368 - -8.627 0.001 -13.717
1 Alluvium 670,027 - -8.627 0.412 -12.208
2 Endapan Danau 48,821 - -8.627 0.025 -11.821
3 Formasi Bongka 96,449 - -8.627 0.05 -11.846

Lithology 4 Formasi Laron.a 44,711 6 -3.036 0.022 -6.226
5 Kambuno granite 611,239 5,492.00 1.174 - 3.947 1.952
6 Pompangeo complex 358,915 46 -3.081 0.191 -6.442
7 Latimojong formation 114,652 22 -2.679 0.055 -5.904
8 Ultramafic complex 46,243 - -8.627 0.024 -11.82
1 3000 117,667 25 -3.809 0.056 -3.838

Precipitation 2 3200 737,764 355 -1.761 0.398 -2.146
3 3500 1,086,356 2,617.00 -0.149 0.154 -0.29
4 >3500 49,27 2,569.00 2.977 -0.595 3.585

%‘ Landslide Susceptibility Map Using Weight of Evidence | . 'g
] i3 = »
»/ W \,‘/ R : N .
ra = \\ ; \ Pamona Selatan i.
! A, e -~
) ! \
" (> Rampi g ‘\\ -
H o - - +I = e
.\ ,— \‘—\
Mangkutana
Seko R g A
g- T‘/\ + _é
r o
r Masamba ;A
;/ /‘l
\{
T ",
Hoos Nt
oy, “
S =
pr
r Sabbang
; |Legend o .
7] Il History of Landslide Events E
[ | Main River
] Balease Watershed
” " Sub-district Boundary
0 Landslide Susceptibility Classes s Barat .
: 0 Low B Tox :
|| Moderate W¢>E
" High . s




Ecological Engineering & Environmental Technology 2026, 27(2), 374-389

1.0 td
/,’
td
’/
0.8 >is
td
,/
’/
L
2 o
¢ 24"
= 72
]
& P
@ 0.4 e
= -~
,/
4
’I
0.2 E P
td
,/
%4 —— woe (AUC = 0.88)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
A

1.0 7
,/
’I
,I
0.8 el
,I
’/
« 0.6 P
2 .
b= P
2
& ,z'
v 0.4 td
g
4
7’
,’
0.2 ’,l
”’
,/ = Ir (AUC = 0.77)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

B

Figure 6. AUC accuracy test

in their respective methodological approaches,
particularly in how they measure and interpret
the relationship between conditioning factors
and landslide occurrence in the study area. This
comparison provides a quantitative basis for se-
lecting the most suitable modelling approach for
the Balease watershed, ensuring that the chosen
method accurately reflects the spatial variability
of landslide susceptibility affected by geological,
geomorphological, and climatic factors.

This study was convinced that landslide oc-
currence was strongly controlled by topographic
and hydrometeorological factors, particularly
slope gradient, elevation, and rainfall-related
variables. Waiyasusri et al. (2023) reported that
steep slopes combined with high rainfall inten-
sity significantly increased landslide probabil-
ity, which was related to the annual mean of
precipitation, slope gradient, elevation, and SPI
as the dominant controlling factors. However,
the LR-based susceptibility modeling demon-
strated that WoE identified substantially larger
high-susceptibility zones, highlighting localized
hazard concentrations that LR tended to under-
represent. In line with the findings of Waiyas-
usri and Wetchayont (2025), revealed that the
LR method resulting conservative and statisti-
cally robust susceptibility maps by integrating
multiple controlling factors simultaneously. The
LR method classified a larger area as low sus-
ceptibility because it only identified high-risk
zones where rainfall, slope gradient, elevation,
and hydrological effects jointly exerted a strong
influence. Therefore, the LR method is appropri-
ate for regional-scale landslide assessment and
long-term spatial planning, although it may un-
derestimate localized high-risk areas compared
to the WoE method.

Inventory and selection of parameters that
influence the historical distribution pattern
of landslides

This study examines the factors contributing
to the occurrence of landslides in the study area,
utilising the AUC value as a basis for evaluat-
ing the relative importance and predictive ability
of each conditioning parameter that influences
landslide occurrences. The AUC value provides
a quantitative assessment of the capacity of each
factor to differentiate between landslide and non-
landslide regions. Parameters with AUC values
below 0.7 are categorized as less effective in
predicting the spatial distribution of inventoried
landslide points. This value indicates that the
parameter’s contribution to model accuracy is
relatively low and has the potential to cause un-
certainty in the analysis results. Parameters with
an AUC value exceeding 0.7 demonstrate strong
predictive power, suggesting that these variables
significantly influence landslide susceptibility and
effectively represent spatial variations in slope in-
stability (Ado et al., 2022). Figure 2 displays the
evaluation results for each parameter, sorted by
the highest AUC values. This accuracy assess-
ment plays a crucial role in identifying the most
significant parameters influencing the historical
distribution of landslide events, as explained by
Reichenbach et al. (2018). They emphasized that
AUC-based quantitative evaluation can enhance
the understanding of the relative contributions
of each conditioning factor in landslide suscep-
tibility modeling. Parameters highlighted in red
exhibit an AUC value below 0.7, signifying in-
adequate predictive accuracy, while those with
an AUC value exceeding 0.7 are deemed reliable
and pertinent for subsequent analyses.
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Evaluating the AUC value of each factor was
essential for optimising and validating the model.
The analysis identified the most influential pa-
rameters, ensuring that only variables with high
discriminative performance were included in the
landslide susceptibility model. This process con-
tributes to reducing data redundancy, increasing
model efficiency, and improving the overall ac-
curacy of the susceptibility map. High-perform-
ing parameters typically include slope gradient,
lithology, land use, and rainfall intensity, as these
factors directly influence soil shear strength, wa-
ter infiltration rates, and slope surface stability.
Therefore, parameter selection based on AUC
thresholds not only enhances the reliability of the
statistical model but also provides a robust scien-
tific framework for understanding the key environ-
mental factors that influence landslide occurrence
in the study area. Analysis of the AUC values ob-
tained from the WoOE and LR methods provides
an objective basis for determining the most ap-
propriate approach for modeling geomorphologi-
cal and environmental attributes in the study area.
The WOE method, as a bivariate statistical tool,
independently evaluates the relationship between
each conditioning factor and landslide occur-
rence, demonstrating high effectiveness in areas
with distinctive factor interrelationship patterns.
In contrast, the multivariate LR method consid-
ers the cumulative influence of multiple param-
eters simultaneously, thus enabling the analysis
of complex interactions between variables. The
comparison of these two approaches reveals that

the strategy with the higher AUC value, confirm-
ing the statistical validity of the resulting suscep-
tibility map and its ability to represent the spatial
dynamics of landslide processes in the study area.

The weight of evidence and logistic regres-
sion techniques were used to classify landslide
vulnerability into three categories: low, medium,
and high (Table 5). The analysis results showed
that the AUC value for the WoE method reached
0.88, indicating excellent predictive performance.
In contrast, the LR method yielded an AUC value
of 0.77, indicating moderate predictive ability, as
illustrated in Figure 5. These validation results
confirm that the WoE method has a higher level
of accuracy compared to LR, thus being consid-
ered more effective in mapping landslide vulner-
ability in the study area, supporting the conclu-
sions of Bhandari et al. (2024), which assert that
the WOE method is the most accurate technique
for predicting landslide susceptibility, especially
in the Siwalik Hills of Nepal. Kusmajaya et al.
(2022) argue that combining the WoE and LR ap-
proaches can enhance the precision and effective-
ness of landslide hazard mapping by considering
the spatial distribution of landslide events. The
integration of the WoE and LR approaches offers
a viable approach to enhance the predictive ac-
curacy of landslide risk evaluations.

The logistic regression method classified a
much larger proportion of the study area as low
susceptibility (99,932.95 ha), followed by mod-
erate susceptibility (70,643.76 ha), with only
7,780.50 ha categorized as high susceptibility. In

Table 5. Comparison of landslide susceptibility area (ha) classified using logistic regression and weight of evidence

methods across sub-districts of North Luwu

Logistic regression method Weight of evidence method
Sub-district boundary - -
Low Moderate High Total (ha) Low Moderate High Total (ha)
Baebunta 8.291,36 | 4.153,49 480,51 12.92536 | 6.752,46 | 2.732,91 | 3.439,98 | 12.925,36
Baebunta Selatan 469,88 469,88 469,88 - - 469,88
Bone Bone 5.733,86 602,97 43,83 6.380,66 | 5.539,21 832,73 8,72 6.380,66
Malangke 19.806,80 19.806,80 | 19.806,71 - - 19.806,71
Malangke Barat 90,69 90,69 90,69 - - 90,69
Mappedeceng 15.489,47 | 10.617,78 | 1.092,77 | 27.200,02 | 13.239,20 | 13.919,32 41,49 27.200,02
Masamba 25.608,27 | 44.192,53 | 5.257,29 | 75.058,08 | 12.061,43 | 32.607,13 | 30.389,53 | 75.058,08
Rampi 4.123,98 4.410,49 690,00 9.224,47 2.276,93 6.857,66 89,87 9.224,47
Sabbang 65,86 - - 65,86 65,86 - - 65,86
Sukamaju 13.622,25 | 6.010,37 203,50 19.836,12 | 12.277,56 | 7.455,06 103,50 19.836,12
Sukamaju Selatan 6.475,18 - - 6.475,18 6.475,18 - 6.475,18
Tana Lili 155,36 656,14 12,60 824,09 - 823,46 0,64 824,18
Total 99.932,95 | 70.643,76 | 7.780,50 |178.357,21| 79.055,12 | 65.228,27 | 34.073,73 | 178.357,21

386



Ecological Engineering & Environmental Technology 2026, 27(2), 374-389

contrast, the WoE method assigned a smaller area
to low susceptibility (79,055.12 ha) and a compa-
rable area to moderate susceptibility (65,228.27
ha) but identified a substantially larger high-sus-
ceptibility area of 34,073.73 ha, which was more
than four times that of the LR result.

At the sub-district scale, this contrast was
particularly evident in Masamba, where WoE de-
lineated 30,389.53 ha as high susceptibility com-
pared to only 5,257.29 ha under LR, indicating
that WoOE was more sensitive in capturing high-
risk zones in this area. Similar patterns were ob-
served in Baebunta and Rampi, where WoE con-
sistently allocated larger areas to the high-suscep-
tibility class than LR. Conversely, in sub-districts
such as Malangke, Malangke Barat, Baebunta
Selatan, Sabbang, and Sukamaju Selatan, both
methods predominantly classified the area as low
susceptibility, suggesting agreement in relatively
stable zones.

Approximately 1.832 landslide occurrences
during the 2020-2024 period are consistent with
previous landslide susceptibility studies in tropi-
cal and mountainous regions of Indonesia. The
contrasting spatial patterns produced by the LR
and WoE methods align with findings reported
in earlier research, where LR typically classified
larger areas as low susceptibility due to its conser-
vative, probability-based modeling framework,
while WoE delineated broader high-susceptibility
zones by emphasizing strong spatial associations
between landslide events and conditioning factor
classes (Dimyati et al., 2022; Shitov et al., 2022;
Shitov et al., 2025). In summary, LR tended to
produce a more conservative susceptibility map
by concentrating most areas into low and moder-
ate classes, whereas WOE provided a more precau-
tionary assessment by identifying broader high-
susceptibility zones. This difference highlighted
the importance of method selection in landslide
hazard assessment, as WOE appeared to be more
suitable for risk-averse planning and mitigation,
while LR was preferable for more generalized re-
gional assessments.

CONCLUSIONS

Twelve of the fifteen parameters evaluated
had area under the curve (AUC) values over 0.7,
including the final analysis. The results showed
approximately 1.832 landslide locations during
the 2020-2024 period. Furthermore, the WoE

method outperformed the LR model, with AUC
values of 0.88 and 0.77, respectively. These re-
sults indicated that the WoE method provided
more accurate landslide risk predictions in the
Balease watershed with superior performance
compared to the LR method. The WoE approach
is recommended as a more effective technique
for landslide susceptibility mapping in this study
area. These findings confirm the relevance of the
bivariate statistical approach in analyzing the re-
lationship between conditioning factors and land-
slide occurrence, especially in areas with com-
plex geomorphological characteristics.

Acknowledgments

We extend our heartfelt gratitude to Seniar-
wan for their invaluable support and contribu-
tions throughout this research, as well as to the
graduate students at Hasanuddin University for
their assistance in this endeavour.

REFERENCES

1. Ado, M., Amitab, K., Maji, A.K., Jasinska, E.,
Gono, R., Leonowicz, Z. and Jasinski, M. (2022).
Landslide susceptibility mapping using machine
learning: a literature survey. Remote Sensing (Basel)
14:3029. https://doi.org/10.3390/rs14133029

2. Ahmad, A., Farida, M., Juita, N. and Jayadi, M.
(2023). Soil micromorphology for modeling spatial
on landslide susceptibility mapping: A case study in
Kelara Subwatershed, Jeneponto Regency of South
Sulawesi, Indonesia. Natural Hazards 118:1445-
1462. https://doi.org/10.1007/s11069-023-06063-1

3. Akbari, A., Bin, F.,, Mat Yahaya, F., Azamirad, M.
and Fanodi, M. (2014). Landslide susceptibility map-
ping using logistic regression analysis and GIS tools.
Electronic Journal of Geotechnical Engineering 19.

4. Ayalew, L. and Yamagishi, H. (2005). The applica-
tion of GIS-based logistic regression for landslide
susceptibility mapping in the Kakuda-Yahiko Moun-
tains, Central Japan. Geomorphology 65:15-31.
https://doi.org/10.1016/j.geomorph.2004.06.010

5. Batar, A.K. and Watanabe, T. (2021). Landslide sus-
ceptibility mapping and assessment using geospatial
platforms and weights of evidence (WoE) method
in the Indian Himalayan region: Recent develop-
ments, gaps, and future directions. ISPRS Interna-
tional Journal of Geo-Information 10:1-28. https://
doi.org/10.3390/ijgi10030114

6. Bhandari, B.P., Dhakal, S. and Tsou, C.-Y. (2024).
Assessing the prediction accuracy of frequency

387



Ecological Engineering & Environmental Technology 2026, 27(2), 374-389

ratio, weight of evidence, Shannon entropy, and
information value methods for landslide suscepti-
bility in the Siwalik Hills of Nepal. Sustainability
16:2092. https://doi.org/10.3390/su16052092

7. BNPB. (2024). Risiko Bencana Indonesia.

8. BPBD Kabupaten Luwu Utara. (2020). Risiko
Bencana.

9. Bui, Q., Ha, H., Thanh, D.K., Nguyen, D.Q., von
Meding, J., Nguyen, L.P. and Luu, C. (2022). Land-
slide susceptibility prediction mapping with ad-
vanced ensemble models: Son La Province, Vietnam.

10. ESRI. 2021. ESRI.

11. FABDEM (University of Bristol). (2022). https://
research-information.bris.ac.uk/en/datasets/ fab-
dem-2. Diakses [tanggal akses].

12. Fell, R., Corominas, J., Bonnard, C., Cascini, L.,
Leroi, E., Savage, W. Z. (2008). Guidelines for land-
slide susceptibility, hazard and risk zoning for land-
use planning. Engineering Geology, Landslide Sus-
ceptibility, Hazard and Risk Zoning for Land Use
Planning, 102(3):99-111. https://doi.org/10.1016/j.
enggeo.2008.03.014

13. Geological Map. Geological Agency. (2009).

14.Hong, H. et al. (2017). Spatial prediction of rota-
tional landslide using geographically weighted re-
gression, logistic regression, and support vector ma-
chine models in Xing Guo area (China), Geomatics,
Natural Hazards and Risk, 8(2):1997-2022. https://
doi.org/10.1080/19475705.2017.1403974

15. Interpretive Geological Map. Geological Agency.
(2010).

16. Khalil, Baja, S., Azikin, B., Hamzah, S., Alimuddin,
I. (2020). Typology of spatial based landslide disas-
ter control in Parepare city South Sulawesi. Interna-
tional Journal of Advanced Research in Engineer-
ing Technology (IJARET). 11(10): 123-138. http://
doi.org/10.34218/1JARET.11.10.2020.012

17. Kusmajaya, S., Tjahjono, B. and Barus, B. (2022).
Bahaya longsor di kabupaten Sukabumi berbasis
metode weight of evidence (WoE), logistic regres-
sion (LR) dan kombinasi WoE-LR. Jurnal IImu
Tanah dan Lingkungan 22:101-106. https://doi.
0rg/10.29244/jitl.22.2.101-106

18. Land System. BIG. (2022).

19. Lee, S., Choi, J. and Min, K. (2002). Landslide sus-
ceptibility analysis and verification using the Bayesian
probability model. Environmental Geology 43:120—
131. https://doi.org/10.1007/s00254-002-0616-x

20. Lin, L., Chen, G., Shi, W., Jin, J., Wu, J., Huang, F.,
Chong, Y., Meng, Y., Li, Y. and Zhang, Y. (2022).
Spatiotemporal evolution pattern and driving mech-
anisms of landslides in the Wenchuan Earthquake-
Affected Region: A case study in the Bailong River
Basin, China. Remote Sensing (Basel) 14: 2339.
https://doi.org/10.3390/rs14102339

388

21.Ma’mur, 1., Akil, A., Nganro, S. (2024). Flood
vulnerability of Masamba Urban Area, North
Luwu Regency. Ecological Engineering & Envi-
ronmental Technology, 25(12), 85-94. https://doi.
0rg/10.12912/27197050/193618

22.Malka, A. (2021). Landslide susceptibility mapping
of Gdynia using geographic information system-
based statistical models. Springer Netherlands.

23. Masruroh, H., et al. (2023). Developing landslide
susceptibility map using Artificial Neural Network
(ANN) method for mitigation of land degradation.
Journal of Degraded and Mining Lands Manage-
ment 10(3): 4479-4494. https://doi.org/10.15243/
jdmIm.2023.103.4479

24. Melati, D. N., Umbara, R. P., Astisiasari, A., Wi-
syanto, W., Trisnafiah, S., Trinugroho, T., Prawi-
radisastra, F., Arifianti, Y., Ramdhani, T. 1., Ari-
fin, S., Anggreainy, M. S. (2024). A comparative
evaluation of landslide susceptibility mapping using
machine learning-based methods in Bogor area of
Indonesia. Environmental Earth Sciences, 83(3): 86.
https://doi.org/10.1007/s12665-023-11402-3

25. Misbahudin. 2020. Landslide susceptibility analy-
sis in Kabandungan District and Salak Geothermal
Field, West Java. Jurnal Geografi Lingkungan
Tropik 4. https://doi.org/10.7454/jglitrop.v4i2.75.

26. Nwazelibe, V. E., Unigwe, C. O., Egbueri, J. C.
(2023). Integration and comparison of algorithmic
weight of evidence and logistic regression in land-
slide susceptibility mapping of the Orumba North
erosion-prone region, Nigeria. Modeling Earth Sys-
tems and Environment, 9(1): 967-986. https://doi.
0rg/10.1007/s40808-022-01549-6

27.Pazzi, V., Morelli, S. and Fanti, R. (2019). A Re-
view of the Advantages and Limitations of Geo-
physical Investigations in Landslide Studies. Inter-
national Journal of Geophysics 1-27. https://doi.
0rg/10.1155/2019/2983087

28. Precipitation. BMKG, One Map Policy.

29. Polykretis, C., Chalkias, C. (2018). Comparison
and evaluation of landslide susceptibility maps
obtained from weight of evidence, logistic regres-
sion, and artificial neural network models. Natural
Hazards, 93(1), 249-274. https://doi.org/10.1007/
$11069-018-3299-7

30. Putriani, E., Wu, Y.-M., Chen, C.-W., Ismulhadi, A.,
Fadli, D. I. (2023). Development of landslide sus-
ceptibility mapping with a multi-variance statistical
method approach in Kepahiang Indonesia. Terres-
trial, Atmospheric and Oceanic Sciences, 34(1), 18.
https://doi.org/10.1007/s44195-023-00050-6

31. Qiu, H., Xu, Y., Tang, B., Su, L., Li, Y., Yang, D. and
Ullah, M. (2024). Interpretable Landslide Susceptibil-
ity Evaluation Based on Model Optimization. Land
(Basel) 13: 639. https://doi.org/10.3390/1and13050639.

32.Rahman, G., Rahman, A.U., Bacha, A.S., Mahmood,



Ecological Engineering & Environmental Technology 2026, 27(2), 374-389

S., Moazzam, M.F.U. and Lee, B.G. (2020). Assess-
ment of landslide susceptibility using weight of evi-
dence and frequency ratio model in Shahpur Valley,
Eastern Hindu Kush.

33. Reichenbach, P., Rossi, M., Malamud, B.D., Mihir,
M. and Guzzetti, F. (2018). Areview of statistically-
based landslide susceptibility models. Earth-Sci-
ence Reviews 180: 60-91. https://doi.org/10.1016/j.
earscirev.2018.03.001

34. Restele, L., et al. (2023). Landslide hazard assess-
ments and their application in land management in
Kendari, Southeast Sulawesi Province, Indonesia.
Journal of Degraded and Mining Lands Manage-
ment 10(3): 4349-4356. https://doi.org/10.15243/
jdmIm.2023.103.4349

35. Soil Map. Center for Agricultural Land Resourc-
es. (2018). Sudarman, 1.G. and Ahmad, A. 2021.
Mapping of landslide-prone areas in the Lisu
river basin Barru Regency based on binary logis-
tic regression. IOP Conference Series: Earth and
Environmental Science 807: 0-10. https://doi.
0rg/10.1088/1755-1315/807/2/022081

36. Tirsyayu, T., Soma, A.S., Paembonan, S.A. (2025).
Land use direction based on landslide susceptibility
levels in the Rongkong Watershed, South Sulawesi,
Indonesia. Asian Journal of Forestry. 9(1): 53-66.
http://doi.org/10.13057/asianjfor/r090106

37. Topographic Map of Indonesia. BIG. (2018).

38. Waiyasusri, K., Wetchayont, P. (2025). Flash flood
susceptibility mapping in Phuket Province, Thailand:
An integrated geo-information technology and logis-
tic regression approach. Forum Geografi, 39(3): 347—
368. https://doi.org/10.23917/forgeo.v39i3.11904

39. Waiyasusri, K., Wetchayont, P., Sripramai, K.
(2025). Evaluating sinkhole hazard susceptibility
using logistic regression model in Khlong | Pan
Sub-Watershed, Surat Thani and Krabi Province,

Thailand. Geography, Environment, Sustainability,
18(2): 32-47.

40. Waiyasusri, K., Wetchayont, P., Tananonchai, A., Su-
wanmajo, D. (2023). Flood susceptibility mapping
using logistic regression analysis In Lam Khan Chu
Watershed, Chaiyaphum Province, Thailand. Geog-
raphy, Environment, Sustainability, 16(2): 41-56.

41. Xie, Z., Chen, G., Meng, X., Zhang, Y., Qiao, L.,
Tan, L. (2017). A comparative study of landslide
susceptibility mapping using weight of evidence,
logistic regression and support vector machine and
evaluated by SBAS-InSAR monitoring: Zhouqu to
Wudu segment in Bailong River Basin, China. En-
vironmental Earth Sciences, 76(8): 313. https://doi.
0rg/10.1007/s12665-017-6640-7

42. Xiong, T., Indrawan, 1.G.B. and Putra, D.P.E. 2017.
Landslide susceptibility mapping using analytical
hierarchy process, statistical index, index of entro-
py, and logistic regression approaches in the Tinalah
Watershed, Yogyakarta. Journal of Applied Geology
2: 78-93. https://doi.org/10.22146/jag.19983

43.Yang, X., et al. (2021). Incorporating landslide
spatial information and correlated features among
conditioning factors for landslide susceptibility
mapping. Remote Sensing 13(11): 6-24. https://doi.
0rg/10.3390/rs13112166

44.Yu, H., Pei, W., Zhang, J. and Chen, G. (2023).
Landslide susceptibility mapping and driving mech-
anisms in a vulnerable region based on multiple ma-
chine learning models. Remote Sensing (Basel) 15:
1886. https://doi.org/10.3390/rs15071886

45. Zulfahmi, Z., Putra, M. H. Z., Sarah, D., Tohari, A.,
Madiutomo, N., Hartanto, P., Damayanti, R. (2025).
GI1S-Based landslide susceptibility mapping with a
blended ensemble model and key influencing factors
in Sentani, Papua, Indonesia. Geosciences, 15(10):
390. https://doi.org/10.3390/geosciences15100390

389





