Carbon isotope analyses can be used for knowledge and practical purpose. They can be used to assess the genesis of carbon in geochemical environment, and may also be used to indicate environmental contamination by carbon-containing compounds. The aim of the paper is to indicate the possibilities of using carbon isotope composition for interpretation concerning the following elements of the natural environment: atmospheric air, subsurface zone (gases in soils and aeration zone) in terms of natural and anthropogenic factors influencing on their quality. This method can be applied universally, when carbon sources are different in isotopic composition.
REFERENCES(76)
1.
Andrews J.A., Harrison K.G., Matamala R., Schlesinger W.H., 1999. Separation of root respiration from total soil respiration using carbon-13 labeling during Free-Air Carbon Dioxide Enrichment (FACE). Soil Sci. Soc. Am. J., 63 (5), 1429–1435.
Atekwana E.A., Krishnamurthy R.V., 2004. Dissolved Inorganic Carbon (DIC) in Natural Waters for Isotopic Analysis, chapter 10. [In:] De Groot P. A. (eds.) Handbook of Stable Isotope Analytical Techniques, Elsevier, vol. I, 203–228.
Börjesson G., Svensson G.H., 1997. Seasonal and diurnal methane emissions from a landfill and their regulation by methane oxidation. Waste Manage. Res., 15, 33–54.
Börjesson G., Chanton J., Svensson B.H., 2001. Methane Oxidation in Two Swedish Landfill Covers Measured with Carbon-13 to Carbon-12 Isotope Ratios. Journal of Environm. Quality, 30, 369–376.
Boutton T.W., 1996. Stable isotope ratios of soil organic matter and their use as indicators of vegetation and climate change. [In:] Mass Spectrometry of Soils, 47–82.
Christophersen M, Kjeldsen P, Holst H, Chanton J., 2001. Lateral gas transport in soil adjacent to an old landfill: factors governing emissions and methane oxidation. Waste Manag. Res., 19 (6), 595-612.
Clymo R.S., Pearce D.M.E., 1995. Methane and Carbon Dioxide Production in Transport through and Efflux from a Peatland Philosophical Transactions. Physical Sciences and Engin., 351, 249−259.
Games L.M., Hayes J.M., 1976. On the mechanisms of CO2 and CH4 production in natural anaerobic environments. W: Jerome O. (red.), Environ. Biogeochem., 1, 51–73.
Gorczyca Z., Różański K., Kuc T., Michalec B., 2003. Seasonal variability of the soil CO2 flux and its isotopic composition in southern Poland, Nukleonika, The International Journal of Nuclear Research, vol. 48 (4), 187–196.
Grossman E.L., 1997. Stable carbon isotopes as indicators of microbial activity in aquifers. [In:] Hurst C.I. (ed.) Manual of environmental microbiology. American Society for Microbiology, Washington D C, 565–576.
Hakala J.A., 2014. Use of stable isotopes to identify sources of methane in Appalachian Basin shallow groundwaters: a review, Environ. Sci. Processes Impacts, 16, 2080–2086.
Hornibrook E.R.C., Longstaffe F.J., Fyfe W.S., 2000a. Factors influencing stable-isotope ratios in CH4 and CO2 within subenvironments of freshwater wetlands: implications for δ-signatures of emissions, Isotopes in Environment. and Health Studies, 36, 151–176.
Hornibrook E.R.C., Longstaffe F.J., Fyfe W.S., 2000b. Evolution of stable carbon-isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments. Geochimica et Cosmochimica Acta, 64, 1013–1027.
Jędrysek M.O., Skrzypek G., Wada E., Doroszko B., Kral T., Pazur A., Vijarnsorn P., Yasuo T., 1995. Analiza d13C i d34S w profilach torfowych a zmiany globalne. Przegl. Geol., 43 (12), 1004–1010.
Kirtland B.C., Aelion C.M., Stone P.A., 2005. Assessing in situ mineralization of recalcitrant organic compounds in vadose zone sediments using δ13C and 14C measurements. Journal of Contaminant Hydrology, 76, 1–18.
Kjeldsen P., Barlaz M.A., Rooker A.P., Baun A., Ledin A., Christensen T.H., 2002. Present and Long Term Composition of MSW Landfill Leachate – A Review. Critical Reviews in Environmental Science and Technology, 32 (4), 297–336.
Korus A., Kotarba M., Nęcki J., 2002. Stężenie i skład izotopowy metanu atmosferycznego w Wałbrzyskim Okręgu Węglowym. Technika jądrowa w przemyśle, medycynie, rolnictwie i ochronie środowiska. t. 1, 232–235.
Kuc T., Zimnoch M., 1994. Evolution of isotopic composition and concentration of atmospheric CO2 as result of anthropogenic influences. Geograph. Pol., 62, 61–72.
Kuc T., Zimnoch M., 1998. Changes of the CO2 sources and sinks in a polluted urban area (South Poland) over the last decade, derived from the carbon isotope composition. Radiocarbon, 40, 417–423.
Kuc T., Różański K., Nęcki J.M., Zimnoch M., Korus A., 2003. Antropogenic emission of CO2 and CH4 in an urban environmen. Applied Energy, 75 (3-4), 193–203.
Li S-L., Liu C-Q., Tao F-X., Lang Y-C., Han G-L., 2005. Carbon Biogeochemistry of Ground Water. Guiyang, Southwest China, Ground Water, 43 (4), 494–499.
Mohammadzadeh H., Clark I., Marschner M., St-Jean G., 2005. Compound Specific Isotopic Analysis (CSIA) of landfill leachate DOC components.Chem. Geol., 218, 3–13.
Mook W.G., Koompans M., Carter A.F., Keeling C.D., 1983. Seasonal, latitudinal and secular variations in the abundance and isotopic ratios of atmospheric CO2. Results from land stations. J. Geophys. Res., 88, 10915–10933.
Mook W.G. (Ed.), 2000. Environmental isotopes in the hydrological cycle. Principles and applications. Vol. I. Introduction – theory, methods, reviev.Technical Documents in Hydrology, No. 39, Vol. I, UNESCO, Paris, 1–280.
Mook W.G (Ed.), 2001. Environmental isotopes in the hydrological cycle. Principles and applications. Col. II. Atmospheric Water. Technical Documents in Hydrology, No. 39, Vol. II, UNESCO, Paris, 1–113.
Nęcki J. M., Schmidt M., Różański K., Zimnoch M., Korus A., Lasa J., Graul R., Levin I., 2003. Six-year record of atmospheric carbon dioxide and methane at a high-altitude mountain site in Poland. Tellus, 55B, 94–104.
Nęcki J.M., Chmura Ł., Zimnoch M., Różański K., 2013. Impact of Emissions on Atmospheric Composition at Kasprowy Wierch Based on Results of Carbon Monoxide and Carbon Dioxide Monitoring. Pol. J. Environ. Stud. Vol. 22, No. 4, 1119–1127.
Palmer S.M., Hope D., Billett M.F., Dawson J.J.C., Bryant C.L., 2001. Sources of organic and inorganic carbon in a headwater stream: Evidence from carbon isotope studies. Biogeochem. 52, 321–338.
Pelak A.J., Sharma S., 2015. Surface water geochemical and isotopic variations in an area of accelerating Marcellus Shale gas development. Environmental Pollution, 195, 91–100.
Porowska D., 2015. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes. Waste Management, 39, 216–225.
Różański K., Korus A., Kuc T., Nęcki J.M., Zimnoch M., Gorczyca Z., 2003. Wyznaczenie zmienności stężenia atmosf. dwutlenku węgla, metanu i szesciofluorku siarki dla rejonu Polski i Europy Śr. (http://www.ftj.agh.edu.pl/~zfs...).
Scartazza A., Mata C., Matteucci G., Yakir D., Moscatello S., Brugnoli E., 2004. Comparison of δ13C of photosynthetic products and ecosystem respiratory CO2 and their responses to seasonal climate variability. Oecologia, 140 (2), 340–351.
Skrzypek G., Jędrysek M.O., 2005. 13C/12C ratio in peat cores: record of past climates. [In:] Lichtfouse E., Schwarzbauer J., Robert D. (Eds.) Environmental Chemistry – Green Chemistry and Pollutants in Ecosystems. Springer-Verlag, 65–73.
Sundh I., Nilsson M., Grynberg G, Svensson B.H., 1994. Depth distribution of microbial production and oxidation of methane in Sphagnum dominated peatlands. Microbial Ecology, 27, 253–265.
Szaran J., Dudziak A., Trembaczowski A., Niezgoda H., Hałas S., 2005. Diurnal variations and vertical distribution of δ13C, and concentration of atmospheric and soil CO2 in a meadow site, SE Poland. Geological Quaterly, 49 (2), 135–144.
Telmer K., Veizer J., 1999. Carbon fluxes, pCO2 and substrate weathering in a large northern river basin. Canada: carbon isotope perspectives, Chemical Geol., 159, 61–86.
Van Breukelen, B.M., Röling, W.F.M., Groen, J., Griffioen, J., Van Verseveld, H.W., 2003. Biogeochemistry and isotope geochemistry of a landfill leachate plume. J. Contam. Hydrol. 65, 245–268.
Wessolek G., Schwärzel K., Renger M., Sauerbrey R., Siewert C., 2002. Soil hydrology and CO2 release of peat soils. J. Plant Nutr. Soil Sci., 165, 494–500.
Whiticar M.J., Faber E., Schoell M., 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation – Isotope evidence. Geochim. Cosmochim. Acta, vol. 50, n. 5, 693–709.
Wingate L., Ogee J., Burlett R., Bosc A., Devaux M., Grace J., Loustau D., Gessler A., 2010. Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of stem, soil and ecosystem respiration. New Phytologist, 1–10.
Zimnoch M., Nęcki J.M., Florkowski T., Neubert R.E.M., 2004. Diurnal variability of δ13C and δ18O of atmospheric CO2 in the urban atmosphere of Kraków, Poland. Isotopes in Environmental and Health Studies, 40 (2), 129–143.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.