PL EN
Competitive Removal of Cationic Dye Using NiAl-LDH Modified with Hydrochar
 
More details
Hide details
1
Master Programme Graduate School of Mathematics and Natural Sciences, Sriwijaya University, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang-South Sumatra, Indonesia
 
2
Graduate School of Mathematics and Natural Sciences, Sriwijaya University, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang-South Sumatra, Indonesia
 
3
Departement of Environmental Engineering, Faculty of Mathematics and Natural Sciences, Insitut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Hui, Jati Agung, Lampung 35365, Indonesia
 
4
Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km.32 Ogan Ilir 30662, Indonesia
 
5
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Jl. Palembang-Prabumulih, Km. 32, Ogan Ilir, South Sumatra, Indonesia
 
6
Department of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Jl. Palembang-Prabumulih, Km. 32, Ogan Ilir, South Sumatra, Indonesia
 
 
Publication date: 2021-07-01
 
 
Corresponding author
Aldes Lesbani   

universitas Sriwijaya
 
 
Ecol. Eng. Environ. Technol. 2021; 4:124-135
 
KEYWORDS
TOPICS
ABSTRACT
In this study, NiAl-LDH was modified with hydrochar using the NiAl-Hydrochar composite coprecipitation method. Materials were characterized by XRD and FT-IR analysis. XRD diffractogram and FT-IR spectra show that the NiAl-Hydrochar composite material has the characteristics of the precursors. NiAl- Hydrochar composite materials have a large adsorption capacity to adsorb cationic dyes. The adsorption follows the Langmuir adsorption isotherm model with the maximum capacity (Qmax) of the NiAl-Hydrochar composite material reaching 256.410 mg/g for malachite green and the adsorption process takes place spontaneously and endothermically. The regeneration process of NiAl-Hydrochar composites was more stable and the decrease was not significant (>70%). The selectivity of the dye mixture showed that the adsorbent was more selective for malachite green dye compared to methylene blue and rhodamine-B.
Journals System - logo
Scroll to top