Removal of Iron Compounds from Mechanical Filters of Household Reverse Osmosis Systems Water Purification
More details
Hide details
1
Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
Corresponding author
Margarita Karpenko Victorivna
Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
Ecol. Eng. Environ. Technol. 2023; 6:163-172
KEYWORDS
TOPICS
ABSTRACT
Today, the most convenient and widespread option for cleaning and purifying drinking water is to install reverse osmosis systems directly at the water intake points. When operating reverse osmosis systems, most owners are not concerned about the negative consequences of using such systems. After 3-6 months of using mechanical filters in the first stage of water treatment, such filters are thrown out together with other household waste. They pose a significant threat to the environment. Currently, companies in Ukraine would not collect and dispose of such filters. This direction is undeveloped. There are no corresponding data in the scientific literature. According to our calculations, about 20,000 household reverse osmosis systems are operated per 1 million people today, so it is easy to calculate that 44,000 cartridges with a total polypropylene volume of 26 m3 enter the environment during the year. It is difficult to imagine the real environmental damage from the cartridges of even one city. Therefore, the regeneration of mechanical filters of reverse osmosis systems is quite relevant and essential today. This work aims to develop an environmentally safe technology for regenerating mechanical filters with the possibility of repeated use. Filter lifespan can be prolonged by special cleaning with sulfuric acid with a fixed pH level. This article highlights the research results on the regeneration the mechanical filters, describes the characteristics of the cleaning process using sulfuric acid and shows options for environmentally safe waste processing from such regeneration.