RESEARCH OF DAILY AND SEASONAL VARIABILITY OF DAIRY WASTEWATER COMPOSITION
 
More details
Hide details
1
Politechnika Białostocka, Wydział Budownictwa i Inżynierii Środowiska, Katedra Technologii w Inżynierii i Ochronie Środowiska, 15-351 Białystok, ul. Wiejska 45E
Publication date: 2016-05-01
 
Inż. Ekolog. 2016; 47:74–81
 
KEYWORDS
ABSTRACT
Purpose of the study was to demonstrate the variability of dairy wastewater flowing into municipal WWTP per day and in different seasons. Research was carried out on effluent from Olecko milk processing plant located in north-eastern Poland. Characteristics of milk processing plant sewage discharge to the municipal treatment plant and the amount and loads of dairy and municipal wastewater was presented. The analysis of the qualitative composition of dairy wastewater was carried out in June and November 2014 year. Every month 4 series of measurements were performed and dairy effluent samples were analyzed 8 times a day. Based on the test results the relationship between indicators of organic pollutants and nutrients was determined. The results were compared with those presented in literature. Dairy wastewater from Olecko is characterized by varying composition during the day, which may negatively affect the purification process of municipal wastewater. There were differences in the amount of organic compounds in the dairy wastewater in summer and autumn. Significantly higher values of BOD5 and COD indicators were found in the sewage during the vegetation season.
 
REFERENCES (25)
1.
Amini M., Younesi H., Lorestani A.Z.Z., Najafpour G. 2013. Determination of optimum conditions for dairy wastewater treatment in UAASB reactor for removal of nutrients. Bios. Tech., 145, 71–79.
 
2.
Andrade L.H., Mendes F.D.S., Espindola J.C., Amaral M.C.S. 2014. Nanofiltration as tertiary treatment for the reuse of dairy wastewater treated by membrane bioreactor. Separ. Purific. Techn., 126, 21–29.
 
3.
Anielak A.M. 2008. Gospodarka wodno-ściekowa przemysłu mleczarskiego. AgroPrzemysł, 2, 57–59.
 
4.
Ayeche R. 2012. Treatment by coagulation-flocculation of dairy wastewater with the residua lime of National Algerian Industrial Gases Company (NIGC-Annaba). Energy Proc., 18, 147–156.
 
5.
Bartkiewicz B., Umiejewska K. 2010. Oczyszczanie ścieków przemysłowych. PWN, Warszawa.
 
6.
Danalewich J.R., Papadiannis T.G., Belyea R.L., Tumbleson M.E., Raskin L. 1998. Characterization of dairy waste streams, current treatment practices and potential for biological nutrient removal. Wat. Res., 32, 12, 3555–3568.
 
7.
Dąbrowski W. 2014. Oczyszczanie odcieków z oczyszczalni mleczarskich w systemach hydrofitowych. Oficyna Wydawnicza Pol. Białost.
 
8.
Dąbrowski W., Puchlik M. 2010. Udział frakcji ChZT w ściekach mleczarskich w oczyszczalni stosującej intensywne usuwanie związków węgla, azotu i fosforu. Rocznik Ochrony Środowiska (Annual Set of Environment Protection), 12, 735–746.
 
9.
Demirel B., Yenigun O., Onay T.T. 2005. Anaerobic treatment of dairy wastewaters: a review. Proc. Biochem., 40, 2583–2595.
 
10.
Dymaczewski Z. 2011. Poradnik eksploatatora oczyszczalni ścieków. PZiTS.
 
11.
Janczukowicz W. 2005. Usuwanie fosforu ze ścieków mleczarskich w bioreaktorze sekwencyjnym w obecności wybranych lotnych kwasów tłuszczowych (LKT). Rozprawy i monografie. Wyd. UWM, Olsztyn.
 
12.
Janczukowicz W., Zieliński M., Dębowski M. 2008. Biodegradability evaluation of dairy effluents originated in selected sections of dairy production. Biores. Techn., 99, 4199–4205.
 
13.
Kaewsuk J., Thorasampan W., Thanuttamavong M., Seo G.T. 2010. Kinetic development and evaluation of membrane sequencing batch reactor (MSBR) with mixed cultures photosynthetic bacteria for dairy wastewater treatment. J. Env. Manag., 91, 1161–1168.
 
14.
Klimiuk E., Łebkowska M. 2008. Biotechnologia w ochronie środowiska. PWN, Warszawa.
 
15.
Mehrdadi N., Nabi Bidhendi G.R., Shokouhi M. 2012. Determination of dairy wastewater treatability by bio-trickling filter packed with lava rocks – case study PEGAH dairy factory. Wat. Scie. & Tech., 65, 8, 1441–1447.
 
16.
Munavalli G.R., Saler P.S. 2009. Treatment of dairy wastewater by water hyacinth. Wat. Scie.&Tech., 59, 4, 713–722.
 
17.
Mutamim N.S.A., Noor Z.Z., Hassan M.A.A., Yuniarto A., Olsson G. 2013. Membrane bioreactor: Applications and limitations in treating high strength industrial wastewater. Chem. Engine. Journ., 225, 109–119.
 
18.
Neczaj E., Kacprzak M., Kamizela T., Lach J., Okoniewska E. 2008. Sequencing batch reactor system for the co-treatment of landfill leachate and dairy wastewater. Desalination, 222, 404–409.
 
19.
Rodriguez L., Villasenor J., Fernandez F.J. 2007 Use of agro-food wastewater for the optimisation of the denitrification process. Wat. Scie. Tech., 55, 10, 63–70.
 
20.
Seremek-Bulge J. 2015. Rynek mleka – stan i perspektywy. IERiGŻ – PIB, ARR, MRiRW, Warszawa.
 
21.
Struk-Sokołowska J. 2011. Zmiany udziału frakcji ChZT podczas oczyszczania ścieków komunalnych z dużym udziałem ścieków mleczarskich. Rocznik Ochrony Środowiska (Annual Set of Environment Protection), 13, 2015–2032.
 
22.
Struk-Sokołowska J., Ignatowicz K. 2013. Współ-oczyszczanie ścieków komunalnych i mleczarskich przy zastosowaniu technologii SBR. Rocznik Ochrony Środowiska (Annual Set of Environment Protection), 15, 1881–1898.
 
23.
Struk-Sokołowska J. 2015. Zmiany frakcji ChZT w procesie oczyszczania ścieków komunalnych i mleczarskich w oczyszczalni typu SBR. Rozpr. Dokt. PB.
 
24.
Tawfik A., Sobhey M., Badawy M. 2008. Treatment of a combined diary and domestic wastewater in an up-flow anaerobic sludge blanket (UASB) reactor followed by activated sludge (AS system). Desalination 227, 167–177.
 
25.
Wojnicz M. 2009. Wpływ modyfikacji układu faz procesowych na efektywność oczyszczania ścieków przemysłu mleczarskiego w systemie SBR. Mon. Kom. Inż. Środ. PAN Lublin, 59, 2.